• Title/Summary/Keyword: mineralized zone

Search Result 72, Processing Time 0.023 seconds

Oxygen and Hydrogen Isotopic Compositions of Stream Waters in the Han River Basin (한강 수계 분지내 하천수의 산소, 수소 안정동위원소 조성)

  • 김규한;이세희
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2002
  • Oxygen and hydrogen isotopic compositions of stream water in the Han river basin are expressed by the equation of $\delta$D=6.6$\delta$$^{18}$ O-7.4, which is not satisfy the meteoric water line ($\delta$D=8$\delta$$^{18}$ O+10). It might be depended on the local climatic condition and the evaporation effect in the Han river basin. The $\delta$$^{18}$ O and $\delta$D values of stream water in the Han river basin range from -8.2 to -10$\textperthousand$ (avg. -9.1$\textperthousand$) and -60 to -96$\textperthousand$ (avg. -69$\textperthousand$), respectively. The stream water from the South Han river (8$\delta$$^{18}$ O= -8.9~ -10$\textperthousand$, avg.-9.3$\textperthousand$ $\delta$D: -66~ -96$\textperthousand$, avg.-69$\textperthousand$) is slightly more depleted in $^{18}$ O and D than those of North Han river ($\textperthousand$$^{18}$ O= -8.4~ -9.7$\textperthousand$, avg. -9.2$\textperthousand$, $\delta$D= -64~ -95$\textperthousand$, avg. -69$\textperthousand$). It reflects more altitude effect than the effect of latitude and Inflow of the $^{18}$ O eniched S $O_4$$^{2-}$ and HC $O_3$- from the carbonate rock and sulfide minerals in the Taebagsan and Hwanggangri mineralized zone. The Main stream water of the Han river having $\delta$D: -60~ -76$\textperthousand$ (avg.-68$\textperthousand$) and $\textperthousand$$^{18}$ O= -8.2~-10$\textperthousand$ (avg.9.0$\textperthousand$) is enriched in $^{18}$ O compared to the South and North Han river waters, which is caused by the evaporation effect. Binary simple mixing ratio of the Main Han river water between South and North Han river waters was obtained to be 6 : 4 by the isotopic data, suggesting a strong influence of South Han river water to the Main Han river water.

3-D Inversion of 3-D Synthetic DC Resistivity Data for Vein-type Ore Deposits (국내 맥상광체조사를 위한 3차원 전기비저항 모델링자료의 3차원 역산 해석)

  • Lee, Ho-Yong;Jung, Hyun-Key;Jeong, Woo-Don;Kwak, Na-Eun;Lee, Hyo-Sun;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore-deposit survey in literature. Based on the fact that mineralized zone are generally more conductive than surrounding media, electrical resistivity survey among several geophysical surveys has been applied to investigate metallic ore deposits. Most of them are grounded on 2-D survey. However, 2-D inversion may lead to some misinterpretation for 3-D geological structures. In this study, we investigate the feasibility of the 3-D electrical resistivity survey to 3-D vein-type ore deposits. We first simulate 2-D dipole-dipole survey data for survey lines normal to the strike and 3-D pole-pole survey data, and then perform 3-D inversion. For 3-D ore-body structures, we assume a width-varying dyke, a wedge-shaped, and a fault model. The 3-D inversion results are compared to 2-D inversion results. By comparing 3-D inversion results for 2-D dipole-dipole survey data to 3-D inversion results for 3-D pole-pole survey data, we could note that the 2-D dipole-dipole survey data yield better inversion results than the 3-D pole-pole data, which is due to the main characteristic of the pole-pole array. From these results, we are convinced that if we have certain information on the direction of the strike, it would be desirable to apply 2-D dipole-diple survey for the survey lines normal to the strike. However, in most cases, we do not have any information on the direction of the strike, because we already developed the ore deposit with the outcrops and the remaining ore deposits are buried under the surface. In that case, performing 3-D pole-pole electrical resistivity survey would be a reasonable choice to obtain more accurate interpretation on ore body structure in spite of low resolution of pole-pole array.