• Title/Summary/Keyword: mineral vein

Search Result 161, Processing Time 0.026 seconds

Relationship of mineral elements in sheep grazing in the highland agro-ecosystem

  • Fan, Qingshan;Wang, Zhaofeng;Chang, Shenghua;Peng, Zechen;Wanapat, Metha;Bowatte, Saman;Hou, Fujiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.44-52
    • /
    • 2020
  • Objective: Minerals are one of the important nutrients for supporting the growth of sheep grazing in the highland, northwest of China. The experiment was conducted to investigate the relationship of both macro and micro minerals in sheep grazing in the highlands of six districts located in the Qilian Mountain of China. Methods: Samples of herbage (n = 240) and soil (n = 240) were collected at random in a "W" shape across the area designated for harvesting from 24 farms, where the sheep commonly graze in October (winter) for mineral analyses. In addition, serum samples were taken via jugular vein from 20 sheep per farm from 24 farms (n = 480 samples in total) for serum minerals analyses. Mean values of macro and micro minerals were statistically compared among districts and the correlations among soil-plant-animal were statistically analyzed and correlations were regressed, as well. Results: The results revealed that there were variations for both macro and micro minerals among districts. Statistical analysis of the correlation coefficients between herbage and sheep were significantly different for most of the minerals but not for P, Cu, and Se. Many correlation regression coefficients were found significantly different among minerals of herbage, soil, and sheep serum especially those of K, Na, Fe, Mn, and Zn (between herbage and sheep serum), and Fe and Mn (between herbage and soil), Na, Fe, Mn, and Zn (between soil and sheep serum), respectively. The regression coefficient equations derived under this experiment for prediction of Ca (R2 = 0.618), K (R2 = 0.803), Mg (R2 = 0.767), Na (R2 = 0.670), Fe (R2 = 0.865),Zn (R2 = 0.950), Mn (R2 = 0.936), and Se (R2 = 0.630), resulted in significant R2 values. Conclusion: It is inferred that the winter herbage minerals in all the districts were below the recommended levels for macro minerals which indicated there would be some mineral deficiencies in sheep grazing the herbage in these regions. Supplemental minerals may therefore play an important role in balancing the minerals available from the herbage in winter and would lead to increased productivity in sheep on the highland areas of China. These findings could be potentially applied to the other regions for improving the livestock productivity.

The Copper Mineralization of the Keumryeong and Kigu Ore Deposits (금령(金嶺) 및 기구광상(基邱鑛床)의 동광화작용(銅鑛化作用))

  • Park, Hee-In;Seol, Yongkoo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.283-296
    • /
    • 1992
  • The Keumryeong deposits is a low grade copper deposits in which copper minerals form disseminated grains and thin veinlets in felsic volcanics seem to be dacite. Alteration of the volcanics consists mainly pervasive propylitization and silicification. Potassic alteration characterized by biotite developed locally adjacent to southwestern contact of granodiorite body. Principal sulfide minerals in altered zone are mainly pyrite and lesser chalcopyrite. Chalcopyrite content in potassic zone is relatively higher than that of surrounding propylitized zone. Pyrite and chalcopyrite accompanies magnetite, molybdenite, sphalerite, pyrrhotite, arsenopyrite, pentlandite, marcasite, hematite, ilmenite, rutile, bismuthinite and native Bi as disseminations, veinlets and knots. Granodiorite body is propylitized and contains veinlets of pyrite, chalcopyrite and molybdenite. Fluid inclusions in sulfide-bearing quartz veinlets and quartz grains of felsic volcanics and granodiorite in altered zone consist of liquid-rich, vapor-rich, $CO_2-bearing$ and halite-bearing inclusions. These four types of inclusion intimately associated on a microscopic scale and indicate condensing or boiling of ore fluid during mineralization. Homogenization temperature of coexisting fluid inclusions are mostly in the range of 350 to $450^{\circ}C$. High salinity fluid contains 28.6 to 48.4 weight percent NaCI equivalent and moderate salinity fluid cotains 0.5 to 12.5 weight percent NaCl equivalent. Pressure estimated from $CO_2$ mole fraction of $CO_2-bearing$ inclusion range 160 to 375 bars. The Kigu copper deposits is a fissure filling copper vein developed 500 m south from the Keumryong deposits. Mineralogy and fluid inclusion data of the Kigu deposits are similar to that of the Keumryeong deposits. Homogenization temperature of fluid inclusions from the Kigu deposits are reasonable agreement with temperature estimated from sulfidation curve of cubanite-chalcopyrite-pyrite-pyrrhotite and pyrite-pyrrhotite mineral assemblages. Not only mineral occurrence and wall rock alteration in the Keumryeong deposits but also fluid inclusion data such as temperature, salinity, pressure and boiling evidences are similar to those of porphyry copper deposits.

  • PDF

A Study o the Geological Occurrence, the Mineralogical and Physico-chemical Properties of the Sericite Ore from the Yangbuk Area, Kyungsangbuk-do (경북 양북지역산 견운모광석의 물성 및 부존산상)

  • 이동진;고상모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.85-96
    • /
    • 1998
  • The sericite ore is formed by the hydrothermal alteration of rhyodacitic welded tuff. The alteration zone of the host rock can be classified into four types based on the mineral assemblages ; sericite, quartz-sericite, silicified and propylite zone. The sericite ore mainly occurs as vein types and fault clay along the fault plane in the quartz-sericite zone. Mineral components of the sericite ore are mainly sericite with minor diaspore, corundum and pyrite. The sericitic porcelaineous ore is mainly composed of quartz and sericite. Accessory minerals are muscovite, diaspore, sphene, corundum, pyrite, iron-oxides and etc. The chemical compositions of K2O, Al2O3, and ignition loss in the sericite ore increase largely than that of the host rock, while the compositions of SiO2, Na2O and Fe2O3 decrease. XRD patterns of the heat-treated sericite ores show the formation of mullite at $1,200^{\circ}C$. and the diaspore-bearing sericite ore forms mullite and corundum at $1,200^{\circ}C$. The differential thermal analysis of the sericite ores show small endothermic peak at 645~668$^{\circ}C$. and the diaspore-bearing sericite ore shows a strong endothermic peak at $517^{\circ}C$. It indicates that the decomposition of diaspore appear at lower temperature than that of sericite. The thermal expansivity of the sericite ores show the similar pattern. The sericite ores show the thermal expansivity of 3.3~4.7% at 900$^{\circ}C$ and 0.39~0.75% at 1,20$0^{\circ}C$, respectively. DTA-TG curves of the sericite ores show closely relations with the thermal expansivity.

  • PDF

Preliminary Study on the Osteoporosis Improvement Effect of Compounds Isolated from Oryza sativa L. root Extract in the Ovariectomized Mouse Model (난소 적출 마우스 모델에서 Oryza sativa L.의 뿌리 추출물에서 분리된 화합물의 골다공증 개선 효과에 관한 예비연구)

  • Seon-Hee Kim;Eun-Yong Choi;Hee-Jin Yang;Jun Sang Bae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.30-35
    • /
    • 2023
  • Bisphosphonates, estrogen, and calcium supplements are commonly used medications for postmenopausal osteoporosis, but they are associated with various side effects such as vaginal bleeding, deep vein thromembolism, and breast cancer. In this study, we aimed to investigate the potential of a compound isolated from the roots of Oryza sativa L. to improve osteoporosis using an ovariectomized mouse model. We isolated and identified oryzativol A, a lignan compound, through chemical analysis of an ethanol extract using a bioassay-guided fractionation protocol. We also examined the metabolism, clearance, and CYP enzyme activity of oryzativol A, and found that it showed plasma stability of over 80% at all analysis times, and indicating a low likelihood of inactivation or excretion by the CYP3A4 enzyme. Our results showed that the high-dose group of oryzativol A exhibited a significant increase in bone mineral density compared to the control group. Although the ALP concentration did not differ significantly compared to the control group, it showed a tendency to increase in the high-dose group of oryzativol A. Furthermore, the abnormal ratio of serum Ca/P, caused by osteoporosis, was improved to a level closer to that of the normal group as the dosage of oryzativol A increased. Taken together, these findings suggest that oryzativol A is stable in vivo and has potential as a therapeutic agent for osteoporosis, particularly when administered in high doses.

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Gold-Silver Mineralization of the Mujeong Mine, Korea (무정광산의 금-은 광화작용)

  • 김상중
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 1999
  • The Mujeong au-Ag hydrothermal vein type deposits occur within the Teriary igneous rocks of the Janggi basin. Ore minerals consist of pyrite, pyrrhotite, sphalertite, chalcopyrite, galena, cosalite, lillianite, argentite and electrum, and associated with epidotization, sericitization and pyritization. Fluid inclusion studies reveal that ore fluids were low saline with a simple NaCl-$H_{2}O$ system. Fluid inclusion data indicate that homogenization temperatures and salinities of fluid are 150 to $340^{\circ}C$ and 1.0 to 6.5wt.% NaCl equivalent, respectively. Sulfur isotope compositions of sulfied minerals ( ${\delta}^{34}S$=6.2 to 9.6$\textperthousand$) indicate that the ${\delta}^{34}S_{H2S}$ value of ore fluids was about 10.4$\textperthousand$. This ${\delta}^{34}S_{H2S}$ value is likely consistent with and hydrothermal sulfur, whereas the fluids were highly influenced by mixing with meteoric water. Measured and calculated oxygen and hydrogen isotope values (${\delta}^{18}O_{H2O}$=-2.7 to 3.4 $\textperthousand$, ${\delta}D_{H2O}$ = -83.6 to -52.7 $\textperthousand$) of ore forming fluids suggest mixing with hydrothermal and meteoric water. Equilibrium thermodynamic interpretation by mineral assemblages and chemistry indicates that sulfur fugacities (-log $fs_2$) ore forming fluids range from 9.0 to 12.6 atm stage II.

  • PDF

Wall-rock Alteration Relating to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan (대곡(大谷) W-Sn-Cu 광상(鑛床)의 열수변질작용(熱水變質作用))

  • Kim, Moon Young
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.209-221
    • /
    • 1988
  • The ore deposit of the Ohtani mine is one of repesentatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling on the order of ore body, three major mineralization stages, called stage I, stage II, and stage ill from earliest to latest, are distinguished by major tectonic breaks. The alteration zories are characterized by specific mineral associations in pseudomorphs after biotite. The alteration zones can be divided into two parts, i. e. a chlorite zone and a muscovite zone, each repesenting mineralogical and chemical changes produced by the hydrothermal alteration. The chloritic alteration took place at the beginning of mineralization, and muscovite alteration in additions to chloritic alteration took place at stage II and ill. The alteration zones are considered to be formed by either of two alteration mechanism. 1) The zones are formed by reaction of the rock with successive flows of solution of different composition and different stage. 2) The zones are formed contemporaneously as the solution move outward. Reaction between the solution and the wall-rock results in a continuous change in solution chemistry. The migration of the successive replacement of the fresh zone$\rightarrow$the chlorite zone$\rightarrow$the muscovite zone may have transgressed slowly veinward, leaving metasomatic borders between the different zones.

  • PDF