• Title/Summary/Keyword: mineral processing

Search Result 566, Processing Time 0.032 seconds

Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.222-226
    • /
    • 2016
  • The synthesis of pure calcium carbonate nanocrystals was achieved using a simultaneous injection method to produce nano particles of uniform size. These were characterized using scanning electron microscopy and powder X-ray diffraction. The nano particles were needle-shaped aragonite polymorphs, approximately 100-200 nm in length. The aragonite polymorph of calcium carbonate was prepared using aqueous solutions of $CaCl_2$ and $Na_2CO_3$, which were injected simultaneously into double distilled water at $50^{\circ}C$ and then allowed to react for 1.5 h. The resulting whisker-type nano aragonite with high aspect ratio (30) is biocompatible and potentially suitable for applications in light weight plastics, as well as in the medical, pharmaceutical, cosmetic and paint industries.

Development and application of inverse model for reservoir heterogeneity characterization using parallel genetic algorithm

  • Kwon Sun-Il;Huh Dae-Gee;Lee Won-Suk;Kim Hyun-Tae;Kim Se-Joon;Sung Won-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.719-722
    • /
    • 2003
  • This paper presents the development of reservoir characterization model equipped with parallelized genetic algorithm, and its application for a heterogeneous reservoir system with integration of the well data and multi-phase production data. A parallel processing method performed by PC-cluster was applied to the developed model in order to reduce time for an inverse calculation. By utilizing the developed model, we performed the inverse calculation with the production data obtained from three layered reservoir system to estimate porosity and permeability distribution. As a result, the pressures observed at well almost identical to those calculated by the developed model. Also, it was confirmed that parallel processing could be applied for reservoir characterization study efficiently.

  • PDF

A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.443-455
    • /
    • 2017
  • This article provides an exclusive overview of the synthesized aragonite precipitated calcium carbonate and its applications in various fields. The last decade has seen a steady increase in the number of publications describing the synthesis, characterization and applications of calcium carbonate morphologies. Mainly, two kinds of processes have been developed for the synthesis of aragonite precipitated calcium carbonate under controlled temperature, concentrations and aging, and the final product is single-phase needle-like aragonite precipitated calcium carbonate formed. This review is mainly focused on the history of developed methods for synthesizing aragonite PCC, crystal growth mechanisms and carbonation kinetics. Carbonation is an economic, simple and ecofriendly process. Aragonite PCC is a new kind of functional filler in the paper and plastic industries, nowadays; aragonite PCC synthesis is the most exciting and important industrial application due to numerous attractive properties. This paper describes the aragonite PCC synthetic approaches and discusses some properties and applications.

Seismic Data Processing Suited for Stratigraphic Interpretation in the Domi Basin, South Sea, Korea (남해 대륙붕 도미분지 탄성파자료의 층서해석을 고려한 전산처리)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.603-613
    • /
    • 2010
  • The Domi Basin in the South Sea of Korea is located between the Jeju Basin and Ulleung Basins, and is characterized by several sediment sags that are interested to have formed by crustal extension. This paper aims to derive an optimized seismic data processing procedure which helps stratigraphic interpretation of the Domi Basin. In particular, our data processing flow incorporated horizon velocity analysis (HVA) and surface-relative wave equation multiple rejection (SRWEMR) to improve the quality of stack section by enhancing the continuity of reflection events and suppressing peg-leg multiples respectively. As a result of processing procedures in this study, unconformities were recognized in the stack section that defines the early and middle Miocene, Eocene-Oligocene sequences. In addition, the overall quality of the stack section was increased as essential data to investigate the evolution of the basin. The suppression of multiple resulted in the identification of the Cretaceous basement. The data processing scheme evaluated through this study is expected to improve the standardization of processing sequences for seismic data from the Domi and adjacent Sora and north-Sora Basins.

The Effects on the Traditional Processing Operation of Hematite Medicinal Mineral through Heating and Quenching in Vinegar (전통적 초쉬법에 의한 적철석 약광물의 약재가공 효과)

  • Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.523-530
    • /
    • 2008
  • The phase changes and variations of elemental contents in hematite medicinal mineral were investigated by a traditional processing operation including heating and quenching in vinegar. Hematite was processed at $650^{\circ}C$ and $900^{\circ}C$ through at least 5 processing cycles. Metal extraction tests in water were carried out with the processed hematite. Heating and quenching in vinegar could not change the phase of hematite. The effect of this traditional method was not clear because there were no variational trends between extracted elements and the number of processing cycles at $650^{\circ}C$ and $900^{\circ}C$. However, the traditional processing operation of heating and quenching in vinegar was very effective to change the hematite mineral towards soft and easily crushing medicinal material.

Removal of Iron Bearing Minerals from Illite (일라이트에 함유된 Fe 불순물 제거)

  • Kim, Yun-Jong;Cho, Sung-Baek;Park, Hyun-Hae;Kim, Sang-Bae
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.497-502
    • /
    • 2006
  • Recently, many attention have been focused on illite as a material for the well-being industry. Illite contains various kinds of iron bearing materials and they restrict their usage. In this study, Fe impurities in the illite produced in Yeongdong-gun, Chungcheongbuk-do were characterized and their removal experiments were performed. According to the characterization of illite raw ore, it contained 1.54 wt.%$Fe_2O_3$ due to the existence of iron oxide($Fe_2O_3$) and pyrite($FeS_2$). The raw ore was crushed into 3 mm or less using cone crusher and then ground by rod mill for the liberation of impurity mineral. For the removal of iron bearing minerals, an acid treatment, a flotation, a magnetic separation, and a flotation combined with magnetic separator were performed respectively. When the illite raw ore was treated with magnetic separation and various kinds of acid, 1.54wt.%. $Fe_2O_3$ content was reduced to 0.78 and 1.0 wt.%, respectively. On the other hand $Fe_2O_3$ content was reduced to be 0.52 wt.% after flotation. These results indicate that iron bearing minerals cannot be reduced below 0.3wt.%$Fe_2O_3$. However, combination of magnetic separation and flotation enable us to get 0.24wt.% of illite concentrate. It is concluded that, for the refinement of illite from Yeongdong-gun, the flotation combined with magnetic separation is good for high purity illite.

A Study on the Processing Standard of REALGAR

  • Kwak, Hwa-Sun;Byun, Young-Ho;Lee, Soo-Chan;Lee, Hyo-Jeong;Park, Seong-Cheol;Kim, Hye-Sung;Kwon, Dong-Yeul
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • While herbal medicine including mineral herbal medicine mostly provides microelements to the human body thanks to abundant metallic elements, its harmfulness has been raised due to elements of heavy metals. Harmfulness of mineral herbal medicine needs to be analyzed quantitatively as well as qualitatively so that specificity of herbal medicine including mineral herbal medicine can be reflected. Consequently, the following aims should be set up to mineral herbal medicine, REALGAR, standard processing of REALGAR and the standards of processed drugs should be secured. On the basis of the results of this study, the reasonable measures to develop the processing method and the test method for heavy metals were presented. Such measures are expected to give the following results. First, consumers may take food and medicine without anxiety, and food and medicine may be effectively managed, and the national service may be improved, and also safety against heavy metals may be publicized. Second, as the principal ingredients and microelements of mineral herbal medicine are qualitatively analyzed, such results are expected to contribute to the advance of national analytics for herbal medicine.

  • PDF

Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as $CO_2$ flow rate, Ca $(OH)_2$ concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca $(OH)_2$ concentration and increasing the $CO_2$ flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.