• Title/Summary/Keyword: mine feasibility study

Search Result 44, Processing Time 0.025 seconds

Application of 3-Dimensional Modeling in Mine Feasibility Study and Production (광산개발 타당성 평가 및 생산에 있어서 3차원 모델링 적용 사례)

  • Choi, Yong-Kun;Heo, Seung;Park, Joon-Young;Kim, Jang-Ha;Lee, Sung-Am
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.89-100
    • /
    • 2009
  • 3-dimensional modeling methods have been used in the every step of resource development; Exploration, reserve estimation, mine feasibility study, mine design and mine production. This report shows seven cases for which 3-dimensional modeling is used in resource development. Six projects deal with resource esimation, mine feasibility study and production. And another deals with mine rehabilitation. These cases show that 3-dimensional modeling method is beneficial to understand the real state of ore deposit and complex underground structures. Moreover, 3-dimensional modeling is the most efficient method for mine planning and management in the every step of resource development.

  • PDF

A Feasibility Assessment of CMDS (Coal Mine Drainage Sludge) in the Stabilization of Mercury Contaminated Soil in Mine Area (광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Moon, Deok Hyun;Ko, Ju In;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study assessed the feasibility of coal mine drainage sludge (CMDS) as a stabilizing agent for mercury contaminated soil through pot experiments and batch tests. In the pot experiments with 43 days of lettuce growth, the bioavailability of mercury in the amended soil and mercury content of the lettuce were decreased by 46% and 50%, respectively. These results were similar to those of the soil amended with the sulfide compound (FeS) generally used for mercury stabilization. Thus, CMDS could be an attractive mercury stabilizer in terms of industrial by-product recycling. Batch tests were conducted to examine mercury fractionation including reactions between the soil and acetic acid. The result showed that some elemental fraction changed to strongly bounded fraction rather than residual (HgS) fraction. This made it possible to conclude that mercury adsorption on oxides in CMDS was the major mechanism of stabilization.

A Study on the Robot Teleoperation for Mine Removal (지뢰제거를 위한 로봇 텔레오퍼레이션 기술 연구)

  • Lim, Soo-Chul;Yoo, Sam-Hyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.156-163
    • /
    • 2008
  • Future Combat System(FCS), such as unmanned systems that reduce the danger faced by soldiers in the field, are likely to be studied and developed. Soldiers when finding and disposing of mines risk injury and death. Several methods of safe mine retrieval are investigated. In this paper, a mine removal method, which uses a remote controlled robot to get rid of mines using a 4 channel architecture teleoperation method is used. The robot, when in contact with soil and mines, is controlled by a remote control. The feasibility of using teleoperation controlled system to remove mines is demonstrated in this paper. The Matlab-Simulink was used as a tool to simulate mine removal with robots. The force and position of the robot{slave system of 4 channel architecture) and controller(master system of 4 channel architecture) are analyzed when users handle the controller with sinusoidal force.

Reduction of Soil Loss from Sloped Agricultural Field by using Organic Compost (유기퇴비를 이용한 급경사 농경지 토양유실 저감)

  • Koh, Il-Ha;Kang, Hui-Cheon;Kwon, Yo Seb;Yu, Chan;Jeong, Mun-Ho;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.48-57
    • /
    • 2020
  • The objective of this study was to investigate the feasibility of organic compost for reducing soil loss in 25% sloped farm land. For the study, laboratory and field experiment were performed. After nine weeks monitoring in pot test, hardness of the amended soil with organic compost (1%~3%, w/w) showed two times higher than the control soil. Furthermore, soil loss of that was decreased by 95% under rainfall simulation test. From the result of laboratory experiment, organic compost with 2% (w/w) was applied for field experimental plot. After six month from April to September, the amount of soil loss became 67% of the initial, and the growth of natural vegetation was not hampered. Therefore, organic compost can be used as amendment materials to reduce soil loss in sloped farmland.

Feasibility Study of Slug Test in Unsaturated Mine Tailings Pile of the Imgi Abandoned Mine in Busan (부산임기광산 폐석적치장에서의 순간충격시험 적용성 연구)

  • Park, Hak-Yun;Ju, Jeong-Woung;Cheong, Young-Wook;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.10-16
    • /
    • 2007
  • The slug test by adding water to well and measuring falling head was conducted to investigate the hydrogeological property of unsaturated or partially saturated mine tailings in the Imgi abandoned mine in Busan. In case that wells were installed with a full screen through two layers with different hydraulic properties, Bouwer and Rice method was useful to estimate the hydraulic conductivity and the depth of mine tailings. In particular, when groundwater dried out in the dry season, the slug test performed by adding water into well to form artificial water table and then conducting falling head test produced the reasonable hydraulic conductivity values. The slug test using falling head test can be an alternative to investigate the hydrogeological property of abandoned mine tailings.

Column Bioleaching of Arsenic from Mine Tailings Using a Mixed Acidophilic Culture: A Technical Feasibility Assessment (혼합 호산성 박테리아를 이용한 광미로부터 비소의 Column Bioleaching : 기술적 평가)

  • Borja, Danilo;Lee, Eunseong;Silva, Rene A.;Kim, Heejae;Park, Jay Hyun;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.69-77
    • /
    • 2015
  • Heap bioleaching for detoxification of mine tailings is a promising technology; however, long-term studies that aim to understand the potential of this process are scarce. Therefore, this study assesses the feasibility of column bioleaching as an alternative technology for treatment of mine tailings with high concentrations of arsenic during a long-term experiment (436 days). To accomplish this objective, we designed a 350-mm plastic column that was packed with 750 g of mine tailings and inoculated with an acidophilic bacterial culture composed of A. thiooxidans and A. ferrooxidans. Redox potential, pH, ferric ion generation, and arsenic concentration of the off-solution were continuously monitored to determine the efficiency of the technology. After 436 days, we obtained up to 70% arsenic removal. However, several drops in removal rates were observed during the process; this was attributed to the harmful effect of arsenic on the bacteria consortium. We expect that this article will serve as a technical note for further studies on heap bioleaching of mine tailings.

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

Development of Control Technology for Acid Mine Drainage by Coating on the Surface of Pyrite using Chemicals (산성광산배수의 발생저감을 위한 황철석 표면의 피막형성 기술개발)

  • Ji, Min-Kyu;Yoon, Hyun-Sik;Ji, Eung-Do;Lee, Woo-Ram;Park, Young-Tae;Yang, Jung-Seok;Jeon, Byong-Hun;Shim, Yon-Sik;Kang, Man-Hee;Choi, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • Acid mine drainage occurs when sulfide minerals are exposed to an oxidizing environment. The objective of this study was to inhibit the oxidation of pyrite by applying various coating agent such as $KH_2PO_4$, MgO and $KMnO_4$ over its surface as an oxidation inhibitors. Experiments were conducted for 8 days to test the feasibility of oxidation inhibitors. The optimal condition of coating agent for standard pyrite and IK mine was the combination of 0.01M $KH_2PO_4$, 0.01M NaOAc and 0.01M NaClO. Otherwise, for YD mine the combination of 0.01M $KMnO_4$, 0.01M NaOAc and 0.01M NaClO. The $SO_4^{2-}$ reduction efficiency of pyrite, IK and YD mine samples was 70, 92 and 84%, respectively. For 8 days, no significant increase of $SO_4^{2-}$ from pyrite sample coated with inhibitor was observed. The pH of solution remains in between 4 to 6 for the reaction conditions.

Assessment of the Feasibility of the Hydrochloric Acid Extraction Method and the Chemical Properties of Agricultural Soils in reclaimed mines (폐광산 토양개량‧복원사업 완료 농경지 안정화 효율 및 화학성 평가)

  • Ju-In Ko;Mi-Sun Park;Gwan-In Park;Seung-Han Baek;Il-Ha Koh
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2024
  • In Korea, the common remedial process for reclamation of agricultural soils nearby abandoned mines involves chemical soil stabilization followed by covering with clean soil. This study investigated the chemical properties of cover soils and the validity of HCl extraction method in assessing the degree of As and heavy metal stabilization in stabilized soils collected from 14 plots where mine reclamation had been completed. The results revealed there were no major differences in contaminants extraction rate between the stabilized soils and contaminated soils, suggesting HCl extraction procedure is a less feasible method to determine the efficiency of the stabilization. Soil quality indicators including OM, SiO2, P2O5, etc. of the land-covering soils were generally lower than those of stabilized soils that used to be the cultivation layer before the stabilization. Nonetheless, the value of those indicators didn't meet the regulatry limits of agricultural soil. Therefore, future strategy for mine reclamation should concentrate not only on contaminant concentration but also on soil quality parameters for agricultural use of the reclaimed soil.