• 제목/요약/키워드: mindlin plate theory

검색결과 119건 처리시간 0.025초

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

등분포 하중을 받는 4변고정 철근콘크리트 사판의 해석(II) -제2보 변장비의 영향- (An analysis of uniformly loaded RIC skew-Plates with all edges built-in (II) - Part 2 effects of edge ratio -)

  • 조진구;이원준
    • 한국농공학회지
    • /
    • 제28권1호
    • /
    • pp.75-82
    • /
    • 1986
  • In this paper. the characteristics of mechanical behaviour due to various edge-ratio of uniformly loaded clamped skew-~plates has been described. In this study, the skew-plate was discretized using 8-noded isoparametric element and Mindlin's plate theory was adapted in finite element formulation. The edge-ratio 0.5,0.8,1.0,1.2,1.5,2.0 and 2.5 were considered. Hence, five cond- itions of the skew-angle, the seven levels of edge ratio were tried. When the edge-ratio was 2.5 or the edge-ratio was 2.0 and the skew-angle was less than 45 degree, the behaviour of the uniformly loaded the skew-plate with all edges clamped was independent of the skew-angle.

  • PDF

특이성을 갖는 비정형 평판의 p-version 유한요소해석 (P-version finite element analysis of the irregular shaped plater with singularities)

  • 우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.65-69
    • /
    • 1990
  • The elastic analysis of floor slabs using the p-version of finite element method encounters stress singularities at certain types of reentrant corners, openings and cut-outs. Results obtained using the computer code based on C$\^$o/-hierarchic plate element formulated by Reissner-Mindlin theory are compared with theoretical predictions and with computational results reported in the literature. The convergence rate of h-, p- and hp-version can be estimated on the basis of the energy norm in global sense. If accuracy in terns of the number of degrees-of-freedom is used as a criterion, the solutions presented here are the most efficient that have been published up to date. Examples are the rhombic plate with the obtuse angle of 150o and the square plate with cut-outs.

  • PDF

Timoshenko보함수 성질을 갖는 다항식을 이용한 Mindlin판유추 구조계의 진동해석 (Vibration Analysis of Mindlin Plates Using Polynomials Having the Property of Timoshenko Beam Functions)

  • 정정훈;정태영;김극천
    • 대한조선학회논문집
    • /
    • 제29권1호
    • /
    • pp.158-172
    • /
    • 1992
  • 대형구조물의 국부구조계를 구성하는 후판, 선체이중저구조와 같은 복판팬널등의 진동문제에 있어서 전단변형 및 회전관성효과가 매우 크므로 정확한 진동해석을 위해서는 이들 구조계를 상기 효과를 고려한 Mindlin판유추 구조계로 취급하여야 한다. 또한, 이들 구조계의 실제 경계조건은 일반적으로 단순지지와 고정의 중간상태이므로 경계조건을 회전에 대한 탄성구속으로 다룰 필요가 있다. 그러나 4변모두 단순지지 경계조건을 갖는 Mindlin판을 제외하고는 엄밀해를 구하기 어려워 근사적 방법의 사용이 불가피한데, 한 방법으로 Rayleigh-Ritz 방법이 널리 이용된다. Rayleigh-Ritz 방법에 의한 Mindlin판유추 구조계의 진동해석에 있어서 진동파형가정함수로서 통상 Timoshenko보함수가 이용된다. 이 경우 전단변형의 효과가 고려되어야 하므로 횡방향처짐 및 굽힘회전각에 대한 2개의 함수계가 도입되어야 하므로 실제 연산이 Euler보함수를 이용한 박판유추 구조계의 진동해석 때 보다도 훨씬 더 복잡하다. 따라서, 본 논문에서는 이러한 연산의 복잡성을 줄이기 위해 진동파형가정함수로서 Timoshenko보함수 성질을 갖는 다항식 도출방안을 제시하였고, 이를 이용하여 주변경계조건이 회전에 대해 탄성구속된 Mindlin판유추 구조계의 진동해석 및 감도해석을 정식화하여, 등방성 후판 및 실선이중저구조의 1/8축척 모델을 대상으로 일련의 수치계산을 수행하여 이의 정확도 및 효율성을 검증하였다.

  • PDF

Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method

  • Edalati, H.;Soltani, B.
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.235-245
    • /
    • 2018
  • In this study the stress analysis of orthotropic thin plate with arbitrary shapes for different boundary conditionsis investigated. Meshfreemethod is applied to static analysis of thin plates with various geometries based on the Kirchhoff classical plate theory. According to the meshfree method the domain of the plates are expressed through a set of nodes without using mesh. In this method, a set of nodes are defined in a standard rectangular domain, then via a third order map, these nodes are transferred to the main domain of the original geometry; therefore the analysis of the plates can be done. Herein, Meshless local Petrov-Galerkin (MLPG) as a meshfree numerical method is utilized. The MLS function in MLPG does not satisfy essential boundary conditions using Delta Kronecker. In the MLPG method, direct interpolation of the boundary conditions can be applied due to constructing node by node of the system equations. The detailed parametric study is conducted, focusing on the arbitrary geometries of the thin plates. Results show that the meshfree method provides better accuracy rather than finite element method. Also, it is found that trend of the figures have good agreement with relevant published papers.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates

  • Loghman, Abbas;Arani, Ali Ghorbanpour;Barzoki, Ali Akbar Mosallaie
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.677-687
    • /
    • 2017
  • The nonlinear buckling response of nano composite anti-symmetric functionally graded polymeric microplate reinforced by single-walled carbon nanotubes (SWCNTs) rested on orthotropic elastomeric foundation with temperature dependent properties is investigated. For the carbon-nanotube reinforced composite (CNTRC) microplate, a uniform distribution (UD) and four types of functionally graded (FG) distribution are considered. Based on orthotropic Mindlin plate theory, von Karman geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is employed to calculate the non-linear buckling response of the plate. Effects of FG distribution type, elastomeric foundation, aspect ratio (thickness to width ratio), boundary condition, orientation of foundation orthotropy and temperature are considered. The results are validated. It is found that the critical buckling load without elastic medium is significantly lower than considering Winkler and Pasternak medium.

Reducing hydroelastic response of very large floating structures by altering their plan shapes

  • Tay, Z.Y.;Wang, C.M.
    • Ocean Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.69-81
    • /
    • 2012
  • Presented herein is a study on reducing the hydroelastic response of very large floating structures (VLFS) by altering their plan shapes. Two different categories of VLFS geometries are considered. The first category comprises longish VLFSs with different fore/aft end shapes but keeping their aspect ratios constant. The second category comprises various polygonal VLFS plan shapes that are confined within a square boundary or a circle. For the hydroelastic analysis, the water is modeled as an ideal fluid and its motion is assumed to be irrotational so that a velocity potential exists. The VLFS is modeled as a plate by adopting the Mindlin plate theory. The VLFS is assumed to be placed in a channel or river so that only the head sea condition is considered. The results show that the hydroleastic response of the VLFS could be significantly reduced by altering its plan shape.

슬래브궤도 하부의 마이크로파일 설치효과 수치해석 (Numerical analyses on the effects of micro pile installation beneath slab tracks)

  • 이수형;김대상;이일화;정충기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.922-927
    • /
    • 2004
  • The bending moment and settlement of the slab track can be reduced by the installation of small numbers of micro piles beneath the track. This paper presents the effect of micro pile installation on the reduction of bending moment and settlement of slab track, estimated by a numerical method. The slab track is modeled as a plate based on the Mindlin's plate theory, and soil and piles are modeled as Winkler and coupled springs, respectively. The stiffness of piles is obtained by the approximate analytical method proposed by Randolph and Wroth. and the modulus of subgrade reaction is adopted to evaluate Winkler spring constant. From the analysis results, the effect of the micro pile installation is significant to considerably reduce the settlement of slab track. However, for the proper reduction of bending moments in a slab track, the pile arrangement should be reasonably taken into account to prevent the stress concentration at pile location.

  • PDF