• 제목/요약/키워드: milling efficiency

검색결과 135건 처리시간 0.025초

Silicon Nitride Composites with Different Nanocarbon Additives

  • Balazsi, Csaba
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.352-362
    • /
    • 2012
  • This paper explores the use of a variety of carbon nanoparticles to impart electrical, thermal conductivity, good frictional properties to silicon nitride matrices. We used the highly promising types of carbon as carbon nanotubes, exfoliated graphene and carbon black nanograins. A high-efficiency attritor mill has also been used for proper dispersion of second phases in the matrix. The sintered silicon nitride composites retained the mechanical robustness of the original systems. Bending strength as high as 700 MPa was maintained and an electrical conductivity of 10 S/m was achieved in the case of 3 wt% multiwall carbon nanotube addition. Electrically conductive silicon nitride ceramics were realized by using carbon nanophases. Examples of these systems, methods of fabrication, electrical percolation, mechanical, thermal and tribological properties are discussed.

Electrochemical Properties of Carbon Composites Prepared by Using Graphite Ball-milled in Argon and Air Atmosphere

  • Lee, Kyoung-Muk;Oh, Seh-Min;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1121-1124
    • /
    • 2008
  • A carbon composite was synthesized by mechanical mixing of ball-milled graphite and PVC powders, followed by pyrolysis reaction of PVC. Natural graphite ball milled under atmosphere of argon or air leads to a disordered structure. It appears that the electrochemical lithium intercalation reaction is dependent on the atmosphere in which the graphite is ball milled. The carbon composite obtained using air-milled graphite shows a high reversible capacity and high initial coulombic efficiency compared to argon-milled graphite. This is attributed to the enhanced thermal stability of a disordered structure in the air milled sample. For the one with air-milled graphite, the disordered structure is maintained during heat treatment, while argon-milled graphite is partially crystallized.

공구경로 변화에 따른 고속 볼 엔드밀 가공에서 경사면의 특성(I) (Characteristics of Inclined Plane Constructed by High speed Ball End Milling according to the Variation of Cutting Direction(I))

  • 강명창
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.137-143
    • /
    • 1999
  • The study of the high speed machining of inclined plane using ball end mill is performed. The use of ball end mill is rapidly growing in die and mold manufacturing. The cutting characteristics, such as cuttin g force, surface roughness and surface profile, are varied according to the variation of cutting directions. Free surface is cut using ball end mill, the surface profile is greatly varied depending upon the cutting direction. So this study will deal with the characteristics of cutting such as cutting efficiency according to the inclined plane of the workpiece, the cutting force according to tool path, surface profile and the roughness of surface. The optimal cutting direction to be applied the cutting for 3-D sculptured surfaces can be show through the results of this study.

  • PDF

미세 와이어의 버 없는 전단에 관한 연구 (Burrless shearing of the micro wire)

  • 김웅겸;홍남표;김헌영;김병희
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.52-56
    • /
    • 2006
  • Punching tools like an electrodes are made by milling or etching or EDM. These methods had time consuming, low efficiency and air pollution. So, we have developed a shearing device which counter punching method for burrless cutting of micro wire. Using the straightened SUS304 wire with $200{\mu}m$ diameter, we confirmed the tendency of the shear plane for punch tools. It was impossible to completely remove the bun in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the U-groove, the effect of the counter punch, shear angle and clearance. The results of the experiments show that indentation, slip plane and bent shape were related to the shear angle and clearance.

주석 함유 폐자원의 공정부산물 전처리 기술 (Development of Pre-treatment for Tin Recovery from Waste Resources)

  • 진연호;장대환;정항철;이기웅
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.142-146
    • /
    • 2014
  • Fundamental experiences have been studied for development of pre-treatment process of Sn by-products such as solders. Dry and wet separation/recovery processes were considered by the differences of physical properties. The by-products, which are analyzed by solder metal and oxides. The metal and oxide were simply separated by dry ball-milling process for 12 hours, after that recovery metal powder might be reusable as lead or lead-free solders. In terms of wet separation process, samples were dissolved in $HNO_3+H_2O_2$ and the precipitation were analyzed by $SnO_2$. Overall efficiency of recovery might be increasing via developing simple pre-treatment process.

엔드밀링의 효과적인 절삭력 모델과 NC 검증시스템으로의 응용 (Fast Force Algorithm of End Milling Processes and Its Application to the NC Verification System)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1555-1562
    • /
    • 1995
  • This study represents the non-dimensional cutting force model. With the non-dimensional cutting force model it is possible to estimate efficiently the maximum cutting force during one revolution of cutter. Using the non-dimensional cutting force model, the feed rate and spindle speed are adjusted so as to satisfy the maximum cutting force and maximum machining error. To verify the accuracy and efficiency of the non-dimensional cutting force model, a series of experiments were conducted, and experimental results proved and verified the non-dimensional cutting force model. The NC toolpath verification system developed in this paper uses the non-dimensional cutting force model, so that it is effective for calculating the cutting force and adjusting the cutting conditions.

난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석 (Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials)

  • 전태수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

난삭재의 고속가공 특성 평가 및 모니터링 시스템 구축 (Development of Monitoring System for Super High-Speed Machining and Evaluation of Machinability of Difficult-to-cut Material)

  • 이우영;최성주;이상태;김흥배
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.208-213
    • /
    • 2001
  • High speed milling(HSM) is one of the emerging cutting process having tremendous potential not only in increased metal removal rates but also in improved surface finish, burr free edge, dimensional accuracy and a virtually stress free component after machining. The High efficiency and accuracy in machining of die/mold materials can be obtained in high speed machining, so it is necessary to analytic the mechanism of high speed cutting process : cutting force, acoustic emission signal.

  • PDF

금형강의 고속가공시 절삭력 및 표면조도의 특성 (Characteristics of Cutting Force and Surface Roughness in the High-Speed Machining of Die Material)

  • 손창수;강명창;이용철;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.36-40
    • /
    • 1996
  • The high-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and moulds. In this paper, high-speed milling for HP-4 die material was carried out with coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show very various characteristics at different cutting conditions. Especially surface roughness of workpiece depends largely on pick feed and feed per revolution of ball endmill. In the condition that pick feed and feed per revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

Micro-EDM 채널가공에서 초음파 가진의 영향 (Effect of Ultrasonic Vibration on Micro-EDM Channel)

  • 임희성;홍민성
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.