• Title/Summary/Keyword: milled rice quality

Search Result 254, Processing Time 0.019 seconds

A New Early-Maturing, High Quality Rice Cultivar 'Joami' (조생 고품질 벼 신품종 '조아미')

  • Kang, Jong-Rae;Nam, Min-Hee;Kwak, Do-Yeon;Jung, Jin-Il;Kim, Dae-Sik;Kim, Jeong-Il;Song, You-Chun;Yeo, Un-Sang;Lee, Jong-Hee;Park, No-Bong;Park, Dong-Soo;Yi, Gi-Hwan;Cho, Jun-Hyeon;Kim, Chun-Song;Lee, Ji-Yoon;Jeon, Myeong-Gee;Shin, Mun-Sik;Oh, Byeong-Geon;Kang, Hang-Won;Ahn, Jin-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.615-622
    • /
    • 2010
  • A new rice cultivar, 'Joami', was developed by the rice breeding team of Sangju Substation, National Institute of Crop Science (NICS), Rural Development Administration. It was selected by a bulk and pedigree methods from a cross-combination among 'Sambaegbyeo', 'Yukara', and 'Tonggae112'. A promising line of YR20557-1-1-3-B-3 was designated as 'Sangju 36' in 2006. Local adaptability test of 'Sangju 36' was conducted at ten sites throughout the Korean peninsula during three years from 2006 to 2008. 'Sangju 36', thereafter, was registered as 'Joami' in 2008. The cultivar headed on July 30 in the test of local adaptability. Endosperm of 'Joami' is translucent with clear chalkiness and has 5.4% higher head rice ratio than that of 'Odaebyeo'. The yield potential of 'Joami' in milled rice is about 5.40 MT/ha under ordinary fertilizer level of local adaptability test, which was 6% higher than that of 'Odaebyeo'. In an alpine area of Korea, the rice variety needs a cold tolerance and a resistance to blast disease. 'Joami' showed a tolerance reaction at Chuncheon cold tolerance screening nursery and exhibited resistance reaction to blast disease in nation-wide disease screening nursery. Therefore, 'Joami' would be well adaptable to mid-mountainous area at central and southern part of Korean peninsula.

Development of Early Maturing Rice Stripe Virus Disease-Resistant 'Haedamssal' through Marker-Assisted Selection (MAS를 이용한 줄무늬잎마름병 저항성 조생종 벼 '해담쌀' 개발)

  • Lee, Jong-Hee;Cho, Jun-Hyeon;Lee, Ji-Yoon;Oh, Seong-Hwan;Kim, Choon-Song;Park, No-Bong;Hwang, Un-Hwa;Song, You-Chun;Park, Dong-Soo;Yeo, Un-Sang
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.448-453
    • /
    • 2019
  • 'Haedamssal' is an early maturing and rice stripe virus disease-resistant cultivar adaptable for early-transplanting cultivation that was developed by the rice breeding team of the Department of Southern Crop, NICS, RDA, in 2014. This cultivar was derived from the cross YR25869 (YR21247-B-B-B-49-1/Sasanishiki BL4//Koshihikari) and YR25868 (Unkwang//YR21247-B-B-B-49-1/Sasanishiki BL4) made in the 2005/2006 winter season and was advanced to the F5 generation by a bulk breeding method using rapid generation advance. To incorporate rice stripe virus resistance, marker-assisted selection on the RSV gene was conducted in 3-way and 6-way cross F1 generation using the tightly linked marker RM6897. From testing in the replicated yield trial in 2011, a promising line YR26258-B-B-B-33-3 was selected and it was designated as 'Milyang276'. A local adaptability test of 'Milyang276' was performed at three locations from 2012 to 2014 and it was named as 'Haedamssal', which was a good eating quality variety. The culm length was 67 cm in yield trials, which was 4 cm shorter than 'Jopyeong'. The number of spikelets per panicle was lower than 'Jopyeong', whereas the number of tillers per hill was higher. This variety was resistant to RSV disease, bacterial blight, and leaf blast disease. The milled rice yield of 'Haedamssal' was 5.48 MT per ha at the early transplanting in the local adaptability test. 'Haedamssal' is well adapted to early transplanting cultivation in the southern plain area (Registration No. 6811).

Factors Affecting Wet-Paddy Threshing Performance (탈곡기의 제작동요인이 벼의생탈곡성능에 미치는 영향)

  • 남상일;정창주;류관희
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 1980
  • Threshing operation may be one of the most important processes in the paddy post-production system as far as the grain loss and labor requirement are concerned . head-feeding type threshers commercially available now in Korea originally were developed for threshing dry paddy in the range of 15 to 17 % in wet basis. However, threshing wet-paddy with the grain moisture content above 20 % has been strongly recommended, especially for new high-yielding Indica -type varieties ; (1) to reduce high grain loss incurred due to the handling operations, and (2) to prevent the quantitative and qualitative loss of milled -rice when unthreshed grains are rewetted due to the rainfall. The objective of this study were to investigate the adaptability of both a head-feeding type thresher and a throw-in type thresher to wet-paddy , and to find out the possiblilities of improving the components of these threshers threshing. Four varieties, Suweon 264 and Milyang 24 as Tongil sister line varieties, minehikari and Jinhueng as Japonica-type varieties, were used at the different levels of the moisture content of grains. Both the feed rate and the cylinder speed were varied for each material and each machine. The thresher output quality , composition of tailing return, and separating loss were analyzed from the sampels taken at each treatment. A separate experiment for measurement opf the power requirement of the head-feeding type thresher was also performed. The results are summarized as follows : 1. There was a difference in the thresher output quality between rice varieties. In case of wet-paddy threshing at 550 rpm , grains with branchlet and torn heads for the Suweon 264 were 12 % and 7 % of the total output in weight, respectively, and for the Minehikari 4.5 % and 2 % respectively. In case of dry paddy threshing , those for the Suweon 264 were 8 % and 5% , and for the Minehikari 4% and 1% respectively. However, those for the Milyang 23 , which is highly susceptable to shattering, were much lower with 1 % and 0.5% respectively, regardless of the moisture content of the paddy. Therefore, it is desirable to breed rice varieties of the same physical properties as well as to improve a thresher adaptable to all the varieties. Torn heads, which increased with the moisture content of rall the varieties except the Milyang 23 , decreased as the cylinder speed increased, but grains with branchlet didnt decrease. The damaged kernels increased with the cylinder speed. 3. The thresher output quality was not affected much by the feed rate. But grains with branchlet and torn heads increased slightly with the feed rate for the head-feeding type thresher since higher resistance lowered at the cylinder speed. 4. In order to reduce grains with branchlet and torn heads in wet-paddy threshing , it is desirable to improve the head-feeding type thresher by developing a new type of cylinder which to not give excess impact on kernels or a concave which has differenct sizes of holes at different locations along the cylinder. 5. For the head-feeding type thresher, there was a difference in separating loss between the varieties. At the cylinder speed of 600 rpm the separating losses for the Minehikari and the Suweon 264 were 1.2% and 0.6% respectively. The separating loss of the head-feeding type thresher was not affected by the moisture content of paddy while that of the Mini-aged thresher increased with the moisture content. 6. From the analysis of the tailings return , to appeared that the tailings return mechanism didn't function properly because lots of single grains and rubbishes were unnecessarily returned. 7. Adding a vibrating sieve to the head-feeding type thresher could increase the efficiency of separation. Consequently , the tailing return mechanism would function properly since unnecessary return could be educed greatly. 8. The power required for the head-feeding type thresher was not affected by the moisture content of paddy, but the average power increased linearly with the feed rate. The power also increased with the cylinder speed.

  • PDF

Current Status of Post - harvest Management of Barley(Hordeum vulgare L.) (보리수확후 건조, 저장 및 유통 실태)

  • 손영구;손종록;백성범;이춘우;남중현;서세정
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.357-361
    • /
    • 2002
  • This study was carried out to understand the problems, and find out the solution of post - Harvest related procedures for barley in Korea. Consecutive post - harvest procedures in harvesting, drying, milling, packaging and marketing methods were collaborately surveyed at Bujeok (Chungchongnamdo) and Kunsuh (Cholanamdo) agricultural cooperative federation where Chalssalbori (waxy barley) and Ssalbori (non waxy barley) were collectively cultivated in a group farming area, respectively. An early harvesting and relatively short harvesting period within 15 to 20 days to transplanting rice plants as a succeeding crop lead to produce undergrade barley and 2 to 3% harvesting loss were considered as the problem that should be improved. In drying of barley, wide moisture content range of harvested barley among the different farmers and cultivation land was made difficult barley drying unifomly when they were dried in same dryer and drying temperature was slightely higher with 50 to 70$\^{C}$ than that of optimum temperature (under 50$\^{C}$) fer barley drying for producing the high quality barley. Dried barley packaged in ton-bag or 3P bag and put into the rectangular grain bin were stored in ambient temperature warehouse and milled for marketing through whole you. The physico-chemical properties and taste of stored barley were fairly maintained until May next year.