• Title/Summary/Keyword: milk fat globule membrane

Search Result 15, Processing Time 0.027 seconds

Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition

  • Chai, Changhoon;Oh, Sejong;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.351-371
    • /
    • 2022
  • Milk fats are present as globules emulsified in the aqueous phase of milk and stabilized by a delicate membrane architecture called milk fat globule membrane (MFGM). The unique structure and composition of the MFGM play an important role in fat digestion and the metabolic programming of neonates. The objective of this review is to compare the structure, composition, and physicochemical characteristics of fat globules in human milk, bovine milk, and infant formula. It provides an overview of the fat digestion process and enzymes in healthy infants, and describes the possible roles of the MFGM in association with factors affecting fat digestion. Lastly, the health benefits of the MFGM on infant nutrition and future perspectives are discussed with a focus on brain development, metabolic response, and gut health.

Composition, Structure, and Bioactive Components in Milk Fat Globule Membrane

  • Ahn, Yu-Jin;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • A unique biophysical membrane which surrounds the milk fat globules is called the milk fat globule membrane (MFGM). Various researches were studied about origin, composition, structure and bioactive components of MFGM. Bioactive protein components of MFGM play an important beneficiary function such as defense mechanism in new born. Among the bioactive lipid components from MFGM phospholipids showed health enhancing functions. The phospholipids also help in the production of certain dairy product from deterioration. MFGM phospholipids also showed antioxidant activity in some dairy products such as butter and ghee produced from milk of buffalo. Based on the beneficial effects, researchers developed MFGM as functional ingredients in various food products. This current review focuses on health enhancing function of MFGM and its components in various dairy products.

Structural Analysis of PAS-4 Glycoprotein from Milk Fat Globule Membrane (유지방구막의 주요 성분인 PAS-4 당단백질의 구조 해석)

  • Hwang Bo, Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Most lipids in milk are dispetsed as the form of fat globules. Apical portion of plasma membrane is coated with fat globules, which are synthesized from mammary epithelial cells and then secreted into the lumen. The unique phenomenon in separation of the plasma membrane from the cell is observed only in mammary system. It has been suggested that milk fat globule membrane(MFGM) is formed from endoplasmic reticulum, Golgi apparatus, secretory granule to plasma membrane. For this reason MFGM is important for nuderstanding the structure and function of biological membrane. Because MFGM also plays an important role in inhibition of lipase action, stimulation of nutrient digestion and absorption, emulsion or function as natural liposome, study of the major components in MFGM will provide the opportunity for more broad industrial uses of MFGM in the future.

  • PDF

Composition of Lipids Associated with Dense Coat-enriched Fractions of Bovine Milk Fat Globule Membrane (우유 지방구막의 고밀도 표피에 결합된 지질의 조성)

  • Kwak, Hae-Soo;Chung, Choong-Il;Lee, Jae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.726-734
    • /
    • 1989
  • To analyze the components of dense coat fractions associated with fat globule membrane, The membrane was treated with various concentrations of Triton X-100, a non-ionic detergent, and the composition of lipids associated to the detergent insoluble material was analyzed. The amount of protein, phospholipid, cholesterol and ganglioside in milk fat globule membrane was reduced consistently with increasing concentrations of Triton X-100. Butyrophilin (band 12), xanthine oxidase (band 3) and band 16 as constituents of insoluble coat materials was revealed after electrophorisis on SDS-polyacrylamide gels. Phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol and sphingomyelin were identified as the major phospholipids of the coat materials without selective concentration relative to the original membranes. Percentages of total phospholipid were not changed by any of the treatments. Fatty acids of total lipid were myristate, palmitate, stearate (major saturated acids), oleate and linoleate (major unsaturated acids). Cholesterol contents on a protein basis were slightly reduced with increasing concentrations of Triton X-100. Cholesterol adhered to protein more tightly than other constituents The contents of gangliosides was proportionally refuted with increasing concentration of Triton X-100.

  • PDF

Biochemical Studies on the Sugar Chain Structure of Glycoproteins with the Same Protein Core of Bovine Milk Fat Globule Membrane (공통의 1차 구조를 가진 우유 지방구막 구성단백질의 당쇄 구조에 관한 생화학적 연구)

  • Seok, Jin-Seok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.138-147
    • /
    • 2003
  • We here analyzed and proposed the structures of the N-linked sugar chains of PAS-7 from bovine milk fat globule membrane. The N-linked sugar chains were liberated from PAS-7 by hydrazinolysis and, after modifying the reducing ends with 2-aminopyridine (PA), were separated into one neutral (7N,55%) and two acidic (7M mono-, 43%; 7D, di-, 2%) sugar chain roups. The latter were converted into neutral groups (7MN and 7DN) by sialidase digestion. The structure of each of these PA-neutral sugar chains was determined by sugar analysis, sequential exoglycosidase digestion, partial acetolysis, and 1H-NMR spectroscopy. The results show that the 10 sugar chains were of the biantennary complex type with and without fucose. The structure of 7N2A one of the major sugar chains, was proposed as; [structure: see text] A structural comparison between PAS-6 and -7 indicated that although they shared the same protein core, their sugar moiety was markedly different, involving the existence of a different pathway during the post-transcriptional modification.

  • PDF

Cloning and Expression of Lactadherin Gene from Korean Women (한국 여성의 Lactadherin 유전자 Cloning과 발현 연구)

  • Yom, Heng-Cherl
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.253-261
    • /
    • 2007
  • Lactadherin is a glycoprotein of human milk fat globule membrane that binds to mucin and butyrophilin forming the protein complex. Especially, mucin and lactadherin in human milk efficiently protect infants with poor immune functions right after birth from infections by microorganisms and play important roles for their early survival, growth and development. Lactadherin inhibits the propagation and growth of rotavirus that is a global pathogen causing infants' diarrhea. Recently this protein was known to promote neovascularization and its deficiency related to develop Alzheimer's disease. In this study, the basic biochemical and physiological aspects of lactadherin were investigated. Messenger RNAs were isolated from mammary tissues from Korean women patients to clone a 1.2 kb cDNA and sequenced its DNA to determine its amino acid sequences. The cDNA was cloned to express its 43 kD protein in E. coli, which was confirmed by Western blot. The recombinant protein was purified and injected to 2 rabbits to raise antibodies against it. The semi-purified milk fat globule membrane proteins from Korean women was analyzed by Western blot using the rabbit antibody to give 70, 55, 46, 30 kD bands. Also several polymorphism and SNPs of lactadherin gene from Korean women were observed compared with those of Caucasian women.

  • PDF

Effects of Automatic Milking Systems on Raw Milk Quality and Milk Fat Properties with or without Feeding Protected Fat (자동착유시스템(AMS) 착유 및 보호지방 첨가 급여가 원유의 품질 및 유지방 특성에 미치는 효과)

  • Moon, Ju Yeon;Chang, Kyeong-Man;Nam, In-Sik;Park, Seong-Min;Oh, Nam Su;Son, Yong-Suk
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.63-70
    • /
    • 2014
  • Automatic milking systems (AMS) have been increasingly introduced to Korean dairy farms. However, in comparison with conventional milking systems (CMS), some negative changes in milk quality are being observed. The use of AMS leads to an increase in milking frequency, which in turn might result in higher physical stress on the milk, possibly causing changes in the milk fat globule (MFG) membrane. Therefore, the purpose of this study was to examine the effect of the different milking systems on the milk quality, with a focus on milk fat properties. At the same time, we studied the effect of feeding the dairy cows with protected fat. Raw milk samples were taken monthly from individual cows as well as from bulk tanks at four AMS and four CMS dairy farms. We measured quality-related parameters such as MFG size distribution, free fatty acid content and composition, and acid values. Although most results showed no significant differences with regard to the milking system, we found a relatively high positive correlation between MFG size and milk fat content. Moreover, larger MFG size was observed in the milk when cows had been fed protected fat. The significantly higher (P< 0.05) free fatty acid content of milk observed under this experimental condition could be attributed to higher milking frequency as a result of using AMS.

  • PDF

Preparation and Characterization of a Polar Milk Lipid-enriched Component from Whey Powder

  • Lee, Kwanhyoung;Kim, Ara;Hong, Ki-Bae;Suh, Hyung Joo;Jo, Kyungae
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.209-220
    • /
    • 2020
  • Milk fat globule membrane (MFGM) is a lipid carrier in mammals including humans that consists mainly of polar lipids, like phospholipids and glycolipids. In this study, a process to enrich polar lipids in commercial butter and whey powder, including polar lipids of MFGM, was developed. WPC (whey protein concentrate) 60 was selected as the most suitable raw material based on the yield, phospholipid, protein, and lactose content of the polar lipid fraction obtained by ethanol extraction of two WPC (WPC60 and WPC70) and two buttermilk (A and B). After fractionation under optimum conditions, the polar-lipid enriched fraction from WPC60 contained 38.56% phospholipids. The content of glycolipids, cerebroside, lactosylceramide, ganglioside GM3, ganglioside GD3, was 0.97%, 0.55%, 0.09%, and 0.14%, respectively. Rancimat results showed that the oxidation stability of fish oil increased with an increase in the polar-lipid fraction by more than 30 times. In addition, the secretion of IL-6 and TNF-α decreased in a concentration-dependent manner after treatment of RAW 264.7 cells with 0.1 to 100 ppm of the polar lipid fraction. In this study, polar lipid concentrates with antioxidant and anti-inflammatory activity, were prepared from milk processing by-products. The MFGM polar lipid concentrates made from by-products are not only additives for infants, but are also likely to be used as antioxidants in cooking oils and as active ingredients for functional foods.

Effect of the Difference in the High Molecular Weight Fraction of Whey Between Cow's Milk and Goat's Milk on Creaming Phenomenon

  • Masuda, T.;Taniguchi, T.;Suzuki, K.;Sakai, T.;Morichi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.351-357
    • /
    • 2001
  • The rapid formation of a cream line cannot be observed in raw goat's milk standing at a low temperature. Although the poor creaming ability of goat's milk has been considered to be due to the small size of milk fat globules and the lack of euglobulin capable of being adsorbed on milk fat globules, there is much left to study. The present work attempted to elucidate a factor for poor creaming ability of goat's milk. The creaming ability of the experimental milks reconstituted from creams and skim milks separated from cow's milk or goat's milk was measured by the volume of the cream layer and the fat content of bottom layer. The polypeptides composition of the P1 the fraction (i.e., the high molecular weight fraction eluted near the void volume obtained by the gel filtration of whey) and milk fat globule membrane prepared from both milks were compared. It was found that the promotion of creaming originated from goat's skim milk was lower than that from cow's skim milk. The P1 fraction in goat's skim milk was less than that in cow's skim milk. The polypeptide (M.W. $4.3{\times}10^4$), found in the P1 fraction of cow's milk was not found in the P1 fraction of goat's milk. It is suggested that the poor creaming ability of goat milk is caused mainly by the difference from cow milk in the amount and the composition of the P1 fraction.