• 제목/요약/키워드: mild heat treatment

검색결과 91건 처리시간 0.029초

이산화염소 가스 훈증, 중온 열수 및 푸마르산 병합처리가 감귤의 미생물학적 안전성 및 저장 중 품질에 미치는 영향 (Combined Treatment of Chlorine Dioxide Gas, Mild Heat, and Fumaric Acid on Inactivation of Listeria monocytogenes and Quality of Citrus unshiu Marc. during Storage)

  • 김현규;민세철;오덕환;구자준;송경빈
    • 한국식품영양과학회지
    • /
    • 제45권8호
    • /
    • pp.1233-1238
    • /
    • 2016
  • 감귤의 저장 중 미생물학적 안전성 확보 및 품질 향상을 위해 0.5% 푸마르산과 $50^{\circ}C$ 열수 세척처리 후 15, 30 ppmv 이산화염소 가스 훈증 처리하여 $4{\pm}1^{\circ}C$에서 30일간 저장하였다. 푸마르산, 열수 세척처리, 15와 30 ppmv 병합처리 시 접종된 Listeria monocytogenes를 3.5~3.7 log CFU/g 감소시켰다. 또한, 감귤의 병합처리 후 30 ppmv 병합처리구에서 저장 30일 후에 효모 및 곰팡이 수에 있어서 2.54 log CFU/g의 감소 효과를 나타냈고, 대조구와 비교하여 부패율을 48% 낮추는 효과를 보였다. 저장 중 당도, 산도는 대조구와 비교하여 유의적인 차이를 나타내지 않았고, 병합처리는 감귤 시료의 표면 색도에 부정적인 영향을 끼치지 않았다. 따라서 본 연구 결과 이산화염소 가스, 중온 열수 세척, 푸마르산 병합처리는 감귤 시료의 품질에 영향을 끼치지 않으면서 미생물학적 안전성 및 품질을 향상할 수 있는 효과적인 허들기술이라고 판단된다.

피로 하중을 받는 열간 압연 연강판재의 기계적 성질과 모우드 변화에 관한 연구 (A Study on the Variation of the Mechanical Properties and Mode of the Hot-Rolled Mild Stell plate under Fatigue Loading)

  • 김학윤;이성호
    • 열처리공학회지
    • /
    • 제8권4호
    • /
    • pp.326-332
    • /
    • 1995
  • Using natural frequency measurement method, which is one of NDT method, natural frequency of the hot-rolled mild steel plate(specimen) under fatigue loading was measured. Between the degradation of the specimen under fatigue loading and the variation of the natural frequency of the specimen was investigated. As a result, the degradation of the specimen was described and monitored as variation of natural frequency of specimen. The natural frequency of specimen decreased gradually under fatigue loading. This means the variation of material properties of specimen. Especially. It means the variation of Young's modulus of specimen.

  • PDF

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).

6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향 (Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites)

  • 김헌주
    • 열처리공학회지
    • /
    • 제15권2호
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

Corrosion Characteristics of Welding Zone by Types of Repair Welding Filler Metals and Post Weld Heat Treatment

  • Lee, Sung-Yul;Moon, Kyung-Man;Lee, Yeon-Chang;Kim, Yun-Hae;Jeong, Jae-Hyun
    • International Journal of Ocean System Engineering
    • /
    • 제2권4호
    • /
    • pp.209-213
    • /
    • 2012
  • Recently, the fuel using in the diesel engines of marine ships has been changed to a low quality of heavy oil because of the steady increase in the price of oil. Therefore, the wear and corrosion in all parts of the engine such as the cylinder liner, piston crown, and spindle and seat ring of exhaust valves has correspondingly increased. The repair welding of a piston crown is a unique method for prolonging its lifetime from an economic point of view. In this case, filler metals with a high corrosion and wear resistance are mainly being used for repair welding. However, often at a job site on a ship, a piston crown is actually welded with mild filler metals. Therefore, in this study, mild filler metals such as CSF350H, E8000B2, and 435 were welded to SS401 steel as the base metal, and the corrosion properties of the weld metals with and without post weld heat treatment were investigated using some electrochemical methods in a 0.1% $H_2SO_4$ solution. The weld metal welded with CSF350H filler metal exhibited the best corrosion resistance among these filler metals, irrespective of the heat treatment. However, the weld metal zones of the E8000B2 and 435 filler metals exhibited better and worse corrosion resistance with the heat treatment, respectively. As a result, it is suggested that in the case of repair welding with CSF350H and 435 filler metals, no heat treatment is advisable, while heat treatment is desirable if E8000B2filler metal is used with repair welding.

육성 용접부의 기계적 성질에 미치는 열처리조건의 영향 (Effect of heat treatment on mechanical properties of overlay welds)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF

Effects of a mild heat treatment on mouse testicular gene expression and sperm quality

  • Zhao, Jun;Zhang, Ying;Hao, Linlin;Wang, Jia;Zhang, Jiabao;Liu, Songcai;Ren, Bingzhong
    • Animal cells and systems
    • /
    • 제14권4호
    • /
    • pp.267-274
    • /
    • 2010
  • The decrease in sperm quality under heat stress causes a great loss in animal husbandry production. In order to reveal the mechanism underlying the sperm quality decrease caused by heat stress, we first established a mild heat-treated mouse model. Then, the sperm quality was identified. Further, the testicular proteome profile was mapped and compared with the control using 2D electrophoresis and mass spectrometry. Finally, the differential expressed proteins involved in the heat stress response were identified by real-time PCR and Western blotting. The results showed that heat stress caused a significant reduction in mouse sperm quality (P<0.05). Further, 52 protein spots on the 2D gel were found to differ between the heat-shocked tissues and the control. Of these spots, some repair proteins which might provide some explanation for the influence on sperm quality were found. We then focused on Bag-1, Hsp40, Hsp60 and Hsp70, which were found to be differently expressed after heat shock (P<0.05). Further analysis in this heat-shocked model suggests numerous potential mechanisms for heat shock-induced spermatogenic disorders.

Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles

  • Ha, Ho-Kyung;Nam, Gyeong-Won;Khang, Dongwoo;Park, Sung Jean;Lee, Mee-Ryung;Lee, Won-Jae
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.123-133
    • /
    • 2017
  • The development of a new manufacturing process, a two-step temperature treatment, to modulate the physicochemical properties of nanoparticles including the size is critical. This is because its physicochemical properties can be key factors affecting the cellular uptake and the bioavailability of bioactive compounds encapsulated in nanoparticles. The aims of this study were to produce (beta-lactoglobulin) ${\beta}-lg$ nanoparticles and to understand how two-step temperature treatment could affect the formation and physicochemical properties of ${\beta}-lg$ nanoparticles. The morphological and physicochemical properties of ${\beta}-lg$ nanoparticles were determined using atomic force microscopy and a particle size analyzer, respectively. Circular dichroism spectroscopy was used to investigate the secondary structure of ${\beta}-lg$. The surface hydrophobicity and free thiol groups of ${\beta}-lg$ were increased with a decrease in sub-ambient temperature and an increase in mild heat temperature. As sub-ambient temperature was decreased, a decrease in ${\alpha}-helical$ content and an increase in ${\beta}-sheet$ content were observed. The two-step temperature treatment firstly involved a sub-ambient temperature treatment from 5 to $20^{\circ}C$ for 30 min, followed secondly by a mild heat temperature treatment from 55 to $75^{\circ}C$ for 10 min. This resulted in the production of spherically-shaped particles with a size ranging from 61 to 214 nm. Two-way ANOVA exhibited the finding that both sub-ambient and mild heat temperature significantly (p<0.0001) affected the size of nanoparticles. Zeta-potential values of ${\beta}-lg$ nanoparticles were reduced with increasing mild heat temperature. In conclusion, two-step temperature treatment was shown to play an important role in the manufacturing process - both due to its inducement of the conformational changes of ${\beta}-lg$ during nanoparticle formation, and due to its modulation of the physicochemical properties of ${\beta}-lg$ nanoparticles.

Synergistic Effect of Slightly Acidic Electrolyzed Water and Ultrasound at Mild Heat Temperature in Microbial Reduction and Shelf-Life Extension of Fresh-Cut Bell Pepper

  • Luo, Ke;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1502-1509
    • /
    • 2015
  • The objectives of this study were to evaluate the effect of combined treatments (slightly acidic electrolyzed water (SAEW), ultrasound (US), or mild heat (60℃)) on the growth of Listeria monocytogenes and Salmonella enterica serovar Typhimurium in fresh-cut bell pepper, and the shelf-life and sensory quality (color and texture) were followed during storage at 4℃ and 25℃. An additional 0.65, 1.72, and 2.70 log CFU/g reduction was achieved by heat treatments at 60℃ for 1 min for DW, SAEW, and SAEW+US, respectively. Regardless of the type of pathogen, the combined treatment (SAEW+US+60℃) achieved a significantly (p < 0.05) longer lag time in all treatment groups. This combined treatment also prolonged the shelf-life of bell pepper up to 8 days and 30 h for the storage at 4℃ and 25℃, respectively. There was also no significant difference in the color and hardness of treated (SAEW+US+60℃) bell pepper from that of control during the storage. This new hurdle approach is thus expected to improve the microbial safety of bell peppers during storage and distribution.

유동상열처리로에 의해 BORIDING처리한 철강재료의 미끄럼마모특성연구 (Sliding Wear Properties of Borided Iron and Steel in Fluidized Bed Furnace)

  • 이한영;배석천
    • 열처리공학회지
    • /
    • 제9권4호
    • /
    • pp.261-270
    • /
    • 1996
  • Boriding is one of the chemical methods to achieve the case hardening of steel as well as nitriding or carburizing. The surface layer of the borided steel shows higher hardness and exhibits better resistance to corrosion or fatigue than the nitrided or carburized steel. The great majority of previous studies were confined to mild steel or some alloy steel. To enlarge the application, ductile cast iron (DCI) as a material for boriding has been tried in this study. Thus, sliding wear test has conducted using a pin-on-disc machine to compare between borided DCI and mild steel in fluidized bed furnace. The results show that the wear resistance of borided DCI is improved. Especially it is more efficient in the case of occurence of the mechanical wear.

  • PDF