• Title/Summary/Keyword: mid-span load

Search Result 84, Processing Time 0.024 seconds

Shear Strengthening Effect by Deviator Location in Externally Post-tensioning Reinforcement (외적 포스트텐셔닝 보강에서 데비에이터의 위치에 따른 전단보강효과)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.3-10
    • /
    • 2018
  • This paper described the shear strengthening effect by deviator location in pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. Three reinforced concrete beams as control beam and eight post-tensioned beams using external steel rods were tested to fail in shear. The externally post-tensioning material was a steel rod of 22 mm diameter, and it had a 655 MPa yield strength and an 805 MPa tensile strength. Specimens depend on multiple variables, such as the number of deviators, location of deviator, and load pattern. The pre-damaged loads up to about 2/3 of ultimate shear capacities were applied to specimens using displacement control and the diagonal shear crack just occurred at these loading levels. And then, the post-tensioning up to when a strain of steel rod reaches about $2000{\mu}{\varepsilon}$ was continuously applied to beam. A displacement control was changed to a load control during post-tensioning. The post-tensioning resulted in increase of load-carrying capacity and restoration of existing deflection. Also, it prevented the existing diagonal cracks from excessively growing. Two deviators effectively improved the load capacity when compared with in case of test which one deviator at mid-span installed. When deviators were located near region which the diagonal crack occurred on, the strengthening impact by post-tensioning was greater.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.

Seismic Response of Multiple Span Prestressed Concrete Girder Bridges in the New Madrid Seismic Zone (New Madrid 지진대의 다경간 PSC 교량의 지진거동)

  • Choi, Eun-Soo;Kim, Hak-Soo;Kim, Kwang-Il;Cho, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.11-23
    • /
    • 2006
  • This paper evaluates the seismic response of multi-span prestressed concrete girder bridges typically found in the New Madrid Seismic Zone region of the central United States. Using detailed nonlinear analytical models and synthetic ground motion records for Memphis, TN, nonlinear response history analyses are performed for two levels of ground motion: 10% probability of exceedance (PE) in 50 years, and 2% probability of exceedance (PE) in 50 years. The results show that the bridge performance is very good fur the 10% PE in 50 years ground motion level. However, the performance for the 2% PE in 50 years ground motion is not so good because it results in highly inelastic behavior of the bridge. Impact between decks results in large ductility demands on the columns, and failure of the bearings that support the girders. It is found that making the superstructure continuous, which is commonly performed for reducing dead load moments and maintenance requirements, results in significant improvement in the seismic response of prestressed concrete girder bridges.

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.

Lateral Behavior of Hybrid Composite Piles Using Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 수평거동 특성)

  • Park, No-Won;Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.133-143
    • /
    • 2018
  • Concrete filled steel tube (PCFT) piles, which compose PHC piles inside thin steel pipes, were developed to increase the flexural strength of the pile with respect to the horizontal load. In order to compare the flexural strength of PCFT pile with that of steel pipe pile, several flexural tests were performed on the PCFT and steel pipe piles with the same diameter and the P-M curves for both piles were constructed by the limit state design method. Four test piles were also installed and lateral pile load tests were performed to compare the lateral load capacities and lateral behaviors of the hybrid composite piles using PCFT piles and the existing piles such as HCP and steel pipe piles. The flexural test results showed that the flexural strength of PCFT piles was 18.7% higher than that of steel pipe piles with thickness of 12mm and the same diameter, and the mid-span deflection of piles was 50% lower than that of steel pipe piles at the same bending moment. From the P-M curves, it can be seen that the flexural strength of PCFT piles subjected to the vertical load is greater than that of steel pipe piles, but the flexural strength of PCFT piles subjected to the pullout load is lower than that of steel pipe piles. In addition, field pile load tests showed that the PCFT hybrid composite pile has 60.5% greater lateral load capacity than the HCP and 35.8% greater lateral load capacity than the steel pipe pile when the length of the upper pile in hybrid composite piles was the same.

Efficient cross-sectional profiling of built up CFS beams for improved flexural performance

  • Dar, M. Adil;Subramanian, N.;Atif, Mir;Dar, A.R.;Anbarasu, M.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.333-345
    • /
    • 2020
  • In the past, many efficient profiles have been developed for cold-formed steel (CFS) members by judicious intermediate stiffening of the cross-sections, and they have shown improved structural performance over conventional CFS sections. Most of this research work was based on numerical modelling, thus lacking any experimental evidence of the efficiency of these sections. To fulfill this requirement, experimental studies were conducted in this study, on efficient intermediately stiffened CFS sections in flexure, which will result in easy and simple fabrication. Two series of built-up sections, open sections (OS) and box sections (BS), were fabricated and tested under four-point loading with same cross-sectional area. Test strengths, modes of failure, deformed shapes, load vs. mid-span displacements and geometric imperfections were measured and reported. The design strengths were quantified using North American Standards and Indian Standards for cold-formed steel structures. This study confirmed that efficient profiling of CFS sections can improve both the strength and stiffness performance by up to 90%. Closed sections showed better strength performance whereas open sections showed better stiffness performance.

Flexural Behavior of Glass Fiber Reinforced Plastic Pipes (유리섬유 강화 플라스틱관의 휨거동에 관한 연구)

  • 장동일;고재원
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 1993
  • 본 논문에서는 유리섬유의 적층수, 유리섬유의 배향각도에 대한 유리섬유 강화 플라스틱(Glass Fiber Reinforced Plastics ; GFRP)의 인장거동 변화를 고찰하고, 이들의 상관관계를 규명하기 위하여 일련의 GFRP 시험체에 대하여 인장실험을 수행하였다. 시험체는 폭12.5mm, 길이 60mm크기로 일정하게 제작하였으며, 시험체에 대하여 인장실험을 수행하였다. 시험체 제작시 유리섬유로 적층수는 14, 22, 30층, 유리섬유의 배향각도는 0$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$로 하였다. 인장실험시 각 시험체의 파괴양상, 극한하중 및 하중변화에 대한 인장변형율을 조사하였고, 이들 결과를 토대로 유리섬유의 적층수와 배향각도에 따른 GFRP의 극한하중, 응력-변형율 선도 및 탄성계수 등을 비교 분석하였다. 한편 본 논문에서는 유리섬유의 적층수, 직경 변화에 따른 GFRP관의 파괴거동을 고찰하기 위하여 4점 재하법에 의한 GFRP관의 휨파괴실험을 수행하였다. 실험에 사용된 시험체는 길이 1200mm로 하였으며, 유리섬유의 적층수를 30, 35, 40층, 관의 직경을 50, 100, 150mm로 하였다. 파괴실험시 각 시험체의 하중변화에 대한 휨 변형율, 중앙점 처짐량 및 항복하중을 측정하였고, 이들 결과를 토대로 유리섬유으 적층수와 관의 직경에 따라 GFRP관의 항복하중 및 파괴에너지를 비교 분석 하였으며, 항복시 파괴에너지를 추정할 수 있는 제안식을 유도하였다.

Experimental Fatigue Characteristics of Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 실험적 피로특성 분석)

  • Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.337-345
    • /
    • 2006
  • In this study, to evaluate fatigue characteristics of developed composite bridge deck, compression fatigue test at girder support and flexural fatigue test for the 2.8m-long flexural test model were carried out. For the test specimen, DB 24 truck load was applied up to 2,000,000 cycles. In the compression fatigue test, behavior at deck tube and its bonded connection were evaluated. In the flexural fatigue test, deck behavior at mid-span and girder connection were evaluated.

Finite element analysis of reinforced concrete spandrel beams under combined loading

  • Ibraheem, O.F.;Bakar, B.H. Abu;Johari, I.
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.291-308
    • /
    • 2014
  • A nonlinear, three-dimensional finite element analysis was conducted on six intermediate L-shaped spandrel beams using the "ANSYS Civil FEM" program. The beams were constructed and tested in the laboratory under eccentric concentrated load at mid-span to obtain a combined loading case: torsion, bending, and shear. The reinforcement case parameters were as follows: without reinforcement, with longitudinal reinforcement only, and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions: T/V = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). The failure of the plain beams was brittle, and the addition of longitudinal steel bars increased beam strength, particularly under low eccentricity. Transverse reinforcement significantly affected the strength at high eccentricities, that is, at high torque. A program can predict accurately the behavior of these beams under different reinforcement cases, as well as under different ratios of combined loadings. The ANSYS model accurately predicted the loads and deflections for various types of reinforcements in spandrel beams, and captured the critical crack regions of these beams.

Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet

  • Park, Jai-woo;Yoo, Jung-han
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.441-465
    • /
    • 2015
  • This paper presents the experimental results of flexural and compression steel members strengthened with carbon fiber reinforced polymers (CFRP) sheets. In the flexural test, the five specimens were fabricated and the test parameters were the number of CFRP ply and the ratio of partial-length bonded CFRP sheets of specimen. The CFRP sheet strengthened steel beam had failure mode: CFRP sheet rupture at the mid span of steel beams. A maximum increase of 11.3% was achieved depending on the number of CFRP sheet ply and the length of CFRP sheet. In the compression test, the nine specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the length of the specimen. From the tests, for short columns it was observed that two sides would typically buckle outward and the other two sides would buckle inward. Also, for long columns, overall buckling was observed. A maximum increase of 57% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 60 transversely.