• 제목/요약/키워드: mid-span load

검색결과 84건 처리시간 0.019초

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.

Plastification procedure of laterally-loaded steel bars under a rising temperature

  • Huang, Zhan-Fei;Tan, Kang-Hai;England, George L.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.699-715
    • /
    • 2010
  • This paper investigates the structural responses of axially restrained steel beams under fire conditions by a nonlinear finite element method. The axial restraint is represented by a linear elastic spring. Different parameters which include beam slenderness ratio, external load level and axial restraint ratio are investigated. The process of forming a mid-span plastic hinge at the mid-span under a rising temperature is studied. In line with forming a fully plastic hinge at mid-span, the response of a restrained beam under rising temperature can be divided into three stages, viz. no plastic hinge, hinge forming and rotating, and catenary action stage. During catenary action stage, the axial restraint pulls the heated beam and prevents it from failing. This study introduces definitions of beam limiting temperature $T_{lim}$, catenary temperature $T_{ctn}$ and warning time $t_{wn}$. Influences of slenderness ratio, load level and axial restraint ratio on $T_{lim}$, $T_{ctn}$ and $t_{wn}$ are examined.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Deflection ductility of RC beams under mid-span load

  • Bouzid, Haytham;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.585-594
    • /
    • 2021
  • Ductility is very important parameter in seismic design of RC members such as beams where it allows RC beams to dissipate the seismic energy. In this field, the curvature ductility has taken a large part of interest compared to the deflection ductility. For this reason, the present paper aims to propose a general formula for predicting the deflection ductility factor of RC beams under mid-span load. Firstly, the moment area theorem is used to develop a model in order to calculate the yield and the ultimate deflections; then this model is validated by using some results extracted from previous researches. Secondly, a general formula of deflection ductility factor is written based on the developed deflection expressions. The new formula is depended on curvature ductility factor, beam length, and plastic hinge length. To facilitate the use of this formula, a parametric study on the curvature ductility factor is conducted in order to write it in simple manner without the need for curvature calculations. Therefore, the deflection ductility factor can be directly calculated based on beam length, plastic hinge length, concrete strength, reinforcement ratios, and yield strength of steel reinforcement. Finally, the new formula of deflection ductility factor is compared with the model previously developed based on the moment area theorem. The results show the good performance of the new formula.

철근콘크리트 구조물의 파괴 안전성에 관한 실험적 연구 (An Experimental Study on the Fracture Safety of Reinforced Concrete Structures)

  • 채원규
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.127-133
    • /
    • 1994
  • In this thesis, the fracture tests were performed on a series of reinforced concrete to investigate the variation of strength and the fracture safety of reinforced concrete structures. The specimens were of the same rectangular cross-section, of effective height 24cm and width 30cm and their span was 330cm. The three point loading system is used in the fracture tests. In these tests, the yield load, the ultimate load, the flexural strain and the mid-span displacement were detected. According to the results of these tests, the fracture behavior of reinforced concrete structures can be summarized as the follows : There Is no difference between the singly and doubly reinforced rectangular beams before the yield load. But from the yield load up to the ultimate load, the mid-span displacement of the singly reinforced rectangular beams are about two times larger than those of the doubly reinforced rectangular beams, The fracture energy of the doubly reinforced rectangular beams are one and half times compared to that of the singly reinforced rectangular beams. Based on the above investigation, it could be concluded that the doubly reinforced rectangular beam is more efficient to resist the brittle fracture than the singly reinforced rectangular beam.

  • PDF

피로 하중을 받는 철근콘크리트 구조물의 안전성에 관한 연구 (A Study on the Safety of Reinforced Concrete Structures under Fatigue Load)

  • 채원규
    • 한국안전학회지
    • /
    • 제9권2호
    • /
    • pp.18-25
    • /
    • 1994
  • In this thesis, the fatigue tests were performed on a series of reinforced concrete to Investigate the variation of strength and the safety of reinforced concrete structures under fatigue load. The specimens were of the same rectangular cross-section, of effective height 24cm and width 30cm and their span was 330cm. The three point loading system is used in the fatigue tests. In these tests, the fracture mode of reinforced concrete structures under fatigue load, relationship between the repeated loading cycles and the mid-span displacement of the specimens were observed. According to the test results, the following fatigue behavior of reinforced concrete specimens were observed. By increasing of the number of repeated loading cycles, the mid-span displacement became greater, however the Incremental amounts of the displacement were reduced. It could be also known that the inelastic strain energy of the doubly reinforced rectangular beams was larger than that of the singly reinforced rectangular beams as increasing the number of repeated loading cycles. Compliance of reinforced concrete structures tended to be reduced as increasing the repeated loading cycles, and the compliance of the doubly reinforced rectangular beams was generally smaller than that of the singly reinforced rectangular beams. Based on the above investigation, it could be concluded that the doubly reinforced rectangular beams under fatigue load were more efficient to resist the brittle fracture than the singly reinforced rectangular beams.

  • PDF

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

부분 인장형 사장교 주형의 복합 구조 (Hybrid Deck System for Partially Earth Anchored Cable Stayed Bridges)

  • 조재영;노정휘;김정중
    • 복합신소재구조학회 논문집
    • /
    • 제4권4호
    • /
    • pp.30-36
    • /
    • 2013
  • Partially earth anchored (PEA) can improve the structural safety and economic feasibility of multiple span cable stayed bridge (CSB). The PEA-CSB can restrain axial compressive load acting on a tower and reduce the global buckling length of a stiffened girder. For these reasons, structural members subject to axial forces can be effectively utilized and material quantity required for a steel deck can be reduced to save construction cost. In this study, the PEA system was verified for its application on a multiple span CSB. The CSB is a four-tower multi-span bridge which has a main span length of 500 m. As high tensile stress was generated at the top of the bridge decks at the mid-span between two main columns, a hybrid deck system for enhancing the bridge deck sections was proposed. While the composite sections made of concrete and steel were used near to the main columns, steel sections were used at the mid-span between two main columns.

Neural network based approach for rapid prediction of deflections in RC beams considering cracking

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.293-303
    • /
    • 2017
  • Maximum deflection in a beam is a serviceability design criterion and occurs generally at or close to the mid-span. This paper presents a methodology using neural networks for rapid prediction of mid-span deflections in reinforced concrete beams subjected to service load. The closed form expressions are further obtained from the trained neural networks. The closed form expressions take into account cracking in concrete at in-span and at near the interior supports and tension stiffening effect. The expressions predict the inelastic deflections (incorporating the concrete cracking) from the elastic moments and the elastic deflections (neglecting the concrete cracking). Five separate neural networks are trained since these have been postulated to represent all beams having any number of spans. The training, validating, and testing data sets for the neural networks are generated using an analytical-numerical procedure of analysis. The proposed expressions have been verified by comparison with the experimental results reported elsewhere and also by comparison with the finite element method (FEM). The proposed expressions, at minimal input data and minimal computation effort, yield results that are close to FEM results. The expressions can be used in every day design since the errors are found to be small.