• Title/Summary/Keyword: mid-latitude

Search Result 120, Processing Time 0.026 seconds

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas (산지계류의 계절적 수온변동 특성 및 영향인자 분석)

  • Nam, Sooyoun;Choi, Hyung Tae;Lim, Honggeun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity (최대 강도 태풍의 북상 경향에 대한 종관분석)

  • Choi, Ki-Seon;Park, Ki-Jun;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.171-180
    • /
    • 2015
  • Regarding the tropical cyclone (TC) genesis frequency, TCs between 1999 and 2013 were generated more frequently in the northwest waters of the tropical- and subtropical western North Pacific than TCs between 1977 and 1998. TCs over the period from 1977-1998 showed a northward track trend generated mostly from the distant sea in east of the Philippines via the mainland of the Philippines and the South China Sea to the west toward Indochina or from the distant sea in east of the Philippines to the distance sea in east of Japan. TCS over the period from 1999-2013 showed a northward shift pattern to the mid-latitude region mostly in East Asia. Therefore, TCs over the period from 1999-2013 tended to move to much higher latitudes than TCs over the period from 1977-1998, which also resulted in the high possibility of maximum TC intensity occurred in higher latitudes during the former period than the latter period. In the difference of 500 hPa streamline between two periods, the anomalous anticyclonic circulations were strengthened in $30-50^{\circ}N$ whereas the anomalous monsoon trough was placed in north of the South China Sea, which was extended to the east up to $145^{\circ}E$. The mid-latitude in East Asia is affected by the anomalous southeasterlies due to the above anomalous anticyclonic circulations and anomalous monsoon trough. The anomalous southeasterlies play a role in anomalous steering flows that directed TCs to the mid-latitude regions in East Asia, which made the latitudes of the maximum intensities in TCs over the period from 1999 - 2013 further to the north than those in TCs over the period from 1977-1998.

Deceasing Trend of Summertime TC Frequency in Japan (여름철 일본에 영향을 주는 태풍빈도의 감소추세)

  • Choi, Jae-Won;Park, Ki-Jun;Lee, Kyungmi;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.851-864
    • /
    • 2015
  • This study analyzed the climate regime shift using statistical change-point analysis on the time-series tropical cyclone (TC) frequency that affected Japan in July to September. The result showed that there was a significant change in 1995 and since then, it showed a trend of rapidly decreasing frequency. To determine the reason for this, differences between 1995 to 2012 (9512) period and 1978 to 1994 (7894) period were analayzed. First, regarding TC genesis, TCs during the 9512 period showed a characteristic of genesis from the southeast quadrant of the tropical and subtropical western North Pacific and TCs during the 7894 period showed their genesis from the northwest quadrant. Regarding a TC track, TCs in the 7894 period had a strong trend of moving from the far east sea of the Philippines via the East China Sea to the mid-latitude region in East Asia while TCs in the 9512 period showed a trend of moving from the Philippines toward the southern part of China westward. Thus, TC intensity in the 7894 period, which can absorb sufficient energy from the sea as they moved a long distance over the sea, was stronger than that of 9512. Large-scale environments were analyzed to determine the cause of such difference in TC activity occurred between two periods. During the 9512 period, anomalous cold and dry anticyclones were developed strongly in the East Asia continent. As a result, Korea and Japan were affected by the anomalous northerlies thereby preventing TCs in this period from moving toward the mid-latitude region in East Asia. Instead, anomalous easterlies (anomalous trade wind) were developed in the tropical western Pacific so that a high passage frequency from the Philippine to the south China region along the anomalous steering flows was revealed. The characteristics of the anomalous cold and dry anticyclone developed in the East Asia continent were also confirmed by the analysis of air temperature, relative humidity and sensible heat net flux showing that most regions in East Asia had negative values.

Scientific Objectives and Mission Design of Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe (IAMMAP) for a Sounding Rocket in Low-Altitude Ionosphere (저고도 전리권 관측을 위한 사운딩 로켓 실험용 IAMMAP(Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe)의 과학적 목표와 임무 설계)

  • Jimin Hong;Yoon Shin;Sebum Chun;Sangwoo Youk;Jinkyu Kim;Wonho Cha;Seongog Park;Seunguk Lee;Suhwan Park;Jeong-Heon Kim;Kwangsun Ryu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.153-168
    • /
    • 2024
  • Sounding rockets are cost-effective and rapidly deployable tools for directly exploring the ionosphere and microgravity environments. These rockets achieve their target altitudes quickly and are equipped with various scientific instruments to collect real-time data. Perigee Aerospace plans its inaugural test launch in the first half of 2024, followed by a second performance test launch in January 2025. The second launch, scheduled off the coast of Jeju Island, aims to reach an altitude of approximately 150 km with a payload of 30 kg, conducting various experiments in the suborbital region. Particularly in mid-latitude regions, the ionosphere sporadically exhibits increased electron densities in the sporadic E layers and magnetic fluctuations caused by the equatorial electrojet. To measure these phenomena, the sounding rocket version of ionospheric anomaly monitoring by magnetometer and plasma-probe (IAMMAP), currently under development at the KAIST Satellite Research Center, will be onboard. This study focuses on enhancing our understanding of the mid-latitude ionosphere and designing observable missions for the forthcoming performance tests.

Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM (중간복잡도 지구시스템모델 LOVECLIM을 이용한 과거 6천년 기후 변화 모의)

  • Jun, Sang-Yoon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.87-103
    • /
    • 2019
  • This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations. However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.

Current and Future Changes in Northern Hemisphere Snow Extent and Their Potential Linkages with Atmospheric Circulation (현재와 미래의 북반구 눈피복 변화와 대기순환과의 잠재적인 상관성)

  • Choi, Gwang-Yong;Kim, Jun-Su;Robinson, David A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.294-298
    • /
    • 2008
  • Snow cover is a potential water resource for later spring and summer seasons as well as a thermal mirror with high reflectivity causing decreases of surface air temperature during cold winter seasons. In this study, current and future changes in Northern Hemisphere snow extent and their potential linkages with atmospheric circulation are examined. The NOAA AVHRR visible snow extent (1967-2006) data as well as observational (NCEP-DOE 1979-2006) and modeled (GFDL 2.1 2081-2100) pressure and surface air temperature data are used. Analyses of observational data demonstrate that the snow extent in meteorological spring (March to April) and summer (June to August) has significantly decreased since the late 1980s. The offset of snow seasons (the timing of snow melt in spring) have also significantly advanced particularly in Europe, East Asia, and northwestern North America. Analyses of pressure fields reveal that the spatial patterns of the earlier snow melt are associated with changes in atmospheric circulation such as the Arctic Oscillation (AO). In the positive winter AO years, multiple positive pressure departure cores in the upper troposphere (200hPa) are observed over the mid-latitude regions from March to mid-April, while a negative pressure departure core (70hPa) prevails over the Arctic Ocean. The reversed anomaly patterns related to later snow melt occur in negative winter AO years. The comparison between current and future thermal spring onsets suggest that snow melt patterns will intensify with larger greenhouse gas emissions, indicating earlier hydrological spring onset.

  • PDF

Analysis on the Variability of Korean Summer Rainfall Associated with the Tropical Low-frequency Oscillation (적도 저주파 진동과 관련된 한반도 여름철 강수의 변동성 연구)

  • Moon, Ja-Yeon;Choi, Youngeun;Park, Changyong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.184-203
    • /
    • 2013
  • This study analyzes the variability of Korean summer rainfall associated with the tropical low-frequency oscillation using long-term observation data. From the EOF analysis, the first mode showed opposite phase between the South and the North Korea with the regime shift in rainfall variability since the mid-1990s. The summer precipitation over South Korea tends to increase in southern part during strong El Ni$\tilde{n}$o where the warm sea surface temperature extends to far eastern tropical Pacific. In weak La Ni$\tilde{n}$a, the increased precipitation directly influences from the western tropical Pacific to the mid-latitude. In June, the rainfall over South Korea is positively correlated with the Indian Summer Monsoon while in July, it is negatively correlated with the Western North Pacific Summer Monsoon. In August, highly negative correlation between the rainfall over South Korea and the Indian Summer Monsoon is found.

  • PDF

Relationship between Korean Drought and North Pacific Oscillation in May (한국 5월 가뭄과 북태평양진동의 연관성)

  • Choi, Ki-Seon;Kim, Do-Woo;Lee, Ji-Sun;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2009
  • A strong negative correlation has been detected between the North Pacific Oscillation Index (NPI) and the Effective Drought Index (EDI) in May over Korea. In May of positive NPI year, anomalous patterns caused a drought in Korea as follows: the anomalous south-low, north-high low-level pressure patterns in the northeast and southeast of Korea have strengthened the anomalous northerlies to Korea. In addition, these anomalous northerlies have prevented western North Pacific (WNP) high from moving northward. As a result, anomalous descending flows have strengthened in the mid-latitude region in East Asia. In the WNP, the anomalous south-high, north-low sea surface temperature (SST) has been widely distributed, which has strengthened anomalous south-low, north-high low-level pressure patterns. These anomalous characteristics of pressure and SST patterns observed in May of positive NPI years have already been detected in previous winter (December-February) and early spring (March, April). In addition, the anomalous negative sea ice concentration in the North Pacific during two seasons has strengthened the anomalous anticyclonic circulation in the same region and in turn made a contribution to formation of anomalous south-low, north-high pressure patterns in May.

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.