• Title/Summary/Keyword: mid-latitude

Search Result 120, Processing Time 0.022 seconds

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

Variations of the Summertime Tropical Cyclone Intensity near 30°N in East Asia (동아시아의 30°N부근에서 여름철 태풍 강도변화)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung;Lee, Ji-Sun
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1089-1101
    • /
    • 2009
  • In this paper, changes in the intensity (e.g., central pressure and maximum sustained wind speed) of Tropical Cyclone (TC) in summer in the regions located at $30^{\circ}N$ in East Asia from 1988 to 1991 were found. The intensity of TC from 1991 to 2007 was much higher than that of TC from 1965 to 1988. The reason for this was that the frequency of TCs passing China from 1991 to 2007 was much lower than that of TCs from 1965-1988 because a northeasterly wind caused by high-pressure circulation in East Asia got severer along the East Asian coast. Instead, TCs moved from the eastern region of the Tropical West Pacific to Korea and Japan mainly after passing the East China Sea due to the low-pressure circulation strengthened in the subtropical waters of East Asia. In addition, low Vertical Wind Shear (VWS) was created along the mid-latitude regions of East Asia and the main path of TCs from 1991 to 2007. Most of the regions in the Northwestern Pacific showed higher Sea Surface Temperature (SST) from 1991 to 2007, and had a good environment where TCs were able to maintain a higher intensity on the mid-latitude. In particular, a low sensible heat flux occurred due to high snow depth in East Asia in the spring of 1991 to 2007. Accordingly, the lower layer of East Asia showed high-pressure circulation, and the sea surrounding East Asia showed low-pressure circulation. Thus, the typical west-high, east-low pattern of winter atmospheric pressure was shown. The possibility of snowfall in East Asia in spring to be used as a factor for predicting the summer intensity of TC in the mid-latitude regions of East Asia was insinuated. The characteristics of TC in a low-latitude region were the same in Korea. The latest intensity of TCs got higher, and the landing location of TCs gradually changed from the west coast to the south coast.

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.

Consumption and Production of NO from European Forest Soils: Effects of Forests and Textures

  • Kim, D.S.;Dijk, S.M.Van;Meixner, F.X.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.12-23
    • /
    • 2008
  • Relationship between the optimum soil water content and clay content on soil samples from mid-latitude European forest was tested. Soil samples from 4 different experimental sites (two forest sites in the Netherlands and a Danish forest) were collected, and analyzed for the soil physical and chemical characteristics. Water retention curves for the soil samples were determined according to the standard procedure ISO 11274, and pF decreased with increase in soil water contents. NO is simultaneously produced and consumed by microbiological processes, which comprise of nitrification and denitrification. NO consumption and production rates were determined from the soil samples and compared to their corresponding water retention curves in order to find the optimum soil water content and matric potential for maximum NO release from mid-latitude soils. NO consumption rate coefficient (k) in Hollandse Hout was significantly lower than those in other soil sites. Maximum NO production was observed at an intermediate soil moisture ($0.2{\sim}0.3kg/kg$) in all the soil samples. Resulting from the NO consumption and production rates for the soils, the empirical NO fluxes of the different soils were calculated in the laboratory.

Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System (KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과)

  • Lee, Sihye;Chun, Hyoung-Wook;Song, Hyo-Jong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.