• Title/Summary/Keyword: microwave integrated circuit

Search Result 157, Processing Time 0.025 seconds

Simulation of Microwave Integrated Circuit on Multilayered Resistive Substrats using Wave Concept Iterative Procedure

  • Akatimagool, Somsak
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.515-518
    • /
    • 2002
  • This paper presents the iterative procedure with the concept of expanded waves in the spectral and spatial domains using the fast modal algorithm. We presents its applications to microwave integrated circuits on resistive substrate. The advantage is a reduction in computation time. These calculated results are checked by comparison with the experimental and simulated results by Sonnet and Momentum program.

  • PDF

Numerical Method for Computing the Resonant Frequencies and Q-factor in Microwave Dielectric Resonator

  • Kim, Nam-young;Yoo, Hojoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.245-248
    • /
    • 1997
  • The dielectric resonators(DRs) with dielectric properties are widely used in microwave integrated circuit(MICs) and monolithic microwave integrated circuits(MMICS). The variational method as numerical simulation scheme would be applied to calculate the resonant frequencies(fr) and Q-factors of microwave dielectric resonators. The dielectric resonator with a cylindrical “puck” structure of high dielectric material is modeled in this simulation. The parameters, such as the diameter, the height, and the dielectric constant of dielectric resonator, would determine the resonant frequency and the Q-factor. The relationship between these parameters would effect each other to evaluate the approximate resonant frequency. This simulation method by the variational formula is very effective to calculate fr, and Q-factor. in high frequency microwave dielectric resonator The error rate of the simulation results and the measured results would be considered to design the microwave dielectric resonators.

  • PDF

Design and Analysis of Double-Layered Microwave Integrated Circuits Using a Finite-Difference Time-Domain Method

  • Ming-Sze;Hyeong-Seok;Yinchao
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.255-262
    • /
    • 2004
  • In this paper, a number of double-layered microwave integrated circuits (MIC) have been designed and analyzed based on a developed finite-difference time-domain (FDTD) solver. The solver was first validated through comparisons of the computed results with those previously published throughout the literature. Subsequently, various double-layered MIC printed on both isotropic and anisotropic substrates and superstrates, which are frequently encountered in printed circuit boards (PCB), have been designed and analyzed. It was found that in addition to protecting circuits, the added superstrate layer can increase freedoms of design and improve circuit performance, and that the FDTD is indeed a robust and versatile tool for multilayer circuit design.

High Output Power and High Fundamental Leakage Suppression Frequency Doubler MMIC for E-Band Transceiver

  • Chang, Dong-Pil;Yom, In-Bok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2014
  • An active frequency doubler monolithic microwave integrated circuit (MMIC) for E-band transceiver applications is presented in this letter. This MMIC has been fabricated in a commercial $0.1-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (pHEMT) process on a 2-mil thick substrate wafer. The fabricated MMIC chip has been measured to have a high output power performance of over 13 dBm with a high fundamental leakage suppression of more than 38 dBc in the frequency range of 71 to 86 GHz under an input signal condition of 10 dBm. A microstrip coupled line is used at the output circuit of the doubler section to implement impedance matching and simultaneously enhance the fundamental leakage suppression. The fabricated chip is has a size of $2.5mm{\times}1.2mm$.

A D-Band Balanced Subharmonically-Pumped Resistive Mixer Based on 100-nm mHEMT Technology

  • Campos-Roca, Y.;Tessmann, A.;Massler, H.;Leuther, A.
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.818-821
    • /
    • 2011
  • A D-band subharmonically-pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a $180^{\circ}$ power divider structure consisting of a Lange coupler followed by a ${\lambda}$/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs-based metamorphic high electron mobility transistor process with 100-nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4-dBm LO drive and an intermediate frequency of 100 MHz. The input 1-dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.

Technological Trend for Satellite Application MMIC (위성용 MMIC 기술 동향)

  • Won, Young-Jin;Lee, Jin-Ho;Chun, Yong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.121-128
    • /
    • 2008
  • In the department of mobile communication technology and satellite communication technology, wireless communication technology division is very important by transmitting and receiving the signals in wireless link environment. Most of all, the components which comprises the transmitter and receiver can decide the RF(Radio Frequency) system performances. Therefore to assure the reliability in the satellite communication field, it is essential to acquire the competitiveness by developing the highly integrated and compact components by means of MMIC(Monolithic Microwave Integrated Circuit) technology. MMIC is the designing and fabricating technology for the RF components. This paper introduces the MMIC technology and describes the technological trend and prospect in the satellite application.

  • PDF

A Study on Characteristics of Coupled Line Employing Periodical Ground Structure on GaAs MMIC (GaAs MMIC상에서 주기적 접지구조를 가지는 결합선로의 절연특성에 관한 연구)

  • Kim, Se-Ho;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.159-165
    • /
    • 2009
  • In this study, using a periodical ground structure(PGS) on GaAs monolithic microwave integrated circuit(MMIC), transmission line with a high isolation characteristic was developed for application to compact signal/bias lines of highly integrated MMIC. And the origin of the high isolation characteristic was theoretically investigated. The high isolation characteristic was originated from a resonance between adjacent microstrip lines employing PGS. With only a spacing of $20{\mu}m$, the coupled microstrip line employing PGS showed an isolation value of -47 dB at 60 GHz. The frequency range for high isolation was easily controlled by changing the PGS structure. Above results indicate that microstrip lines employing PGS are very useful for application to compact signal/bias lines of highly integrated MMIC requiring a high isolation characteristics between lines. In addition, equivalent circuit employing closed-form equation for the coupled line with PGS was also extracted.

A fully integrated downconverter MMIC for millimeter wave applications (밀리미터파 응용을 위한 완전집적 다운컨버터 MMIC)

  • Jeon, Jang-Hyeon;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • In this paper, we developed a fully integrated downconverter MMIC (monolithic microwave integrated circuit) including Lange coupler and output active balun for millimeter wave applications. Concretely, ${\lambda}$/4 transmission line was added to Lange coupler for size reduction of RF/LO input, and mixed RF/LO signals were applied to gate of the FET of mixer. Active balun was used at output port for a coupling of out-of-phase IF output signals. According to measured results, the proposed downconverter MMIC showed good RF performances. For example, the downconverter MMIC showed an LO leakage power of -25 dBc at IF output port, and a RF-LO isolation of 18 dB. Therefore, off-chip components such as LO rejection filters were not required for a normal operation of the proposed downconverter MMIC. The proposed downconverter MMIC showed a conversion gain of 10.3 dB at RF frequency of 63 GHz. The size of the downconverter MMIC including all active and passive components was $2.2{\times}1.4mm^2$.

MMIC 기술 동향

  • Kim, Dong-Gu;Park, Hyeong-Mu
    • ETRI Journal
    • /
    • v.9 no.3
    • /
    • pp.127-138
    • /
    • 1987
  • 본고에서는 MMIC (Monolithic Microwave Integrated Circuit)의 연구동향을 미국을 중심으로 소개한다. MMIC의 역사, 공정, 소자, 설계, packaging, 측정에 대하여 조사함으로써 차세대 화합물반도체 MMIC개발의 앞으로의 방향을 모색하고자 한다. 본고는 미국 Microwave & RF 논문지 1987년 3월호에 게재된 R. S. Pegally와 D. Maki의 논문내용을 중심으로 편역한 것이다.

  • PDF