• Title/Summary/Keyword: microwave dielectric ceramics

Search Result 335, Processing Time 0.031 seconds

Effect of Dopants on the Microwave Dielectric Properties of $(1-x)MgTiO_3-xCaTiO_3$ Ceramics (불순물 첨가에 따른 $(1-x)MgTiO_3-xCaTiO_3$ 세라믹스의 마이크로웨이브 유전특성변화)

  • 우동찬;이희영;한주환;김태홍;최태구
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.843-853
    • /
    • 1997
  • The effect of dopant on microwave dielectric properties of (1-x)MgTiO3-xCaTiO3 ceramics, known to be used as microwave dielectric resonators for global positioning system and personal communication system, has been analyzed in terms of variations in defect concentrations and microstructural features with its addition. The addition of dopants was revealed to result in a significant change in the microstructure as well as defect concentration of the ceramics. For instance, the quality factor is proportional to sintered density of the ceramics by inversely proportional to grain size as well as vacancy concentration. Accordingly, it is believed that the dopant effect on the microwave dielectric properties should be separately analyzed with either microstructural change or the change in vacancy concentration.

  • PDF

Microwave Dielectric Properties of Bi2O3-TiO2 Composite Ceramics

  • Axelsson, Anna-karin;Sebastian, Maladil;McN Alford, Neil
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.340-345
    • /
    • 2003
  • B $i_2$ $O_3$-Ti $O_2$ composite dielectric ceramics have been prepared by a conventional solid state ceramic route. The composite ceramics were prepared with starting materials of different origin and the microwave dielectric properties were investigated. The sintered ceramics were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray microanalysis, Raman and microwave methods. Structural and microstructural analyses identified two separate phases: Ti $O_2$(rutile) and B $i_2$ $Ti_4$0$_{11}$. The separate grains of titania and bismuth titanate were distributed uniformly in the ceramic matrix. The composition 0.88Ti $O_2$-0.12B $i_2$ $Ti_4$ $O_{11}$ was found to have a Q$\times$f of 9300 GHz (measured at a frequency of 3.9 GHz), a temperature coefficient of frequency, $\tau$$_{cf}$ near zero and a high relative permittivity, $\varepsilon$r of 83. The microwave dielectric properties were measured down to 20$^{\circ}$K K. The quality factor increased on cooling the ceramic samples.les.

Dielectric properties of $BiNbO_4$ dielectric ceramics for multilayer microwave device (적층형 마이크로파 소자용 $BiNbO_4$ 유전체 세라믹스의 유전특성)

  • 박정흠;장낙원;윤광희;최형욱;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.900-905
    • /
    • 1996
  • We have investigated dielectric properties of low fired ceramics BiNbO$_{4}$ containing 0.05[wt%] V$_{2}$O$_{5}$ and x[wt%l Cr$_{2}$O$_{3}$ (x=0, 0.2, 0.4, 0.8, 1.2). By substituting Cr for Bi, dielectric constant .epsilon.$_{r}$ and quality factor Q.f increased and temperature coefficient of resonant frecquency .tau.$_{f}$ changed to positive value. In the composition of BiNbO$_{4}$+0.05 [Wt%] V$_{2}$O$_{5}$+0.8[wt%]Cr$_{2}$O$_{3}$ sintered at 960[.deg. C], we could obtain microwave dielectric properties of .epsilon.$_{r}$=49, Q.f.simeq.3000[GHz](at 4.8[GHz]), .tau.$_{f}$.simeq.0[ppm/.deg. C]. As the above ceramics can be sintered near 960[.deg. C], it is applicable to multilayer microwave device with Ag conductor.tor.tor.tor.

  • PDF

The Microwave Dielectric Properties of BMCT Ceramics (BMCT 세라믹스의 마이크로파 유전특성)

  • Lee, Mun-Gi;Choe, Ui-Seon;Ryu, Gi-Won;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.335-339
    • /
    • 2002
  • Ba(Mgl-xCox)TaO3[BMCT] ceramics were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of 1525~$1625^{\circ}C$ for 5hr. in air. The crystal structure of BMCT ceramics was investigated by the XRD. The microstructure of the specimens were observed by SEM. The Microwave dielectric properties of BMCT specimens were investigated as a function of composition and sintering temperature. All BMCT ceramics sintered over 1575$^{\circ}C$ were showed a polycrystalline complex perovskite structure. The density of BMCT (90/10) specimen sintered at $1575^{\circ}C$ was 7.75g/㎤. As the Co contents decreased, the ordering parameter of B-site in BMCT increased. In the case of the BMCT(90/10) ceramics sintered at $1575^{\circ}C$ for 5 hours, dielectric constant, quality factor and temperature coefficient of resonant frequency for microwave dielectrics application were a good value o( 25, 17, 845 at 10㎓ and +2.4 ppm/${\circ}$, respectively.

Microwave Dielectric Properties of $Ba(Mg_{1/3}Ta_{2/3})O_3$[BMT] Ceramics with Ca1cining Condition (하소조건에 따른 $Ba(Mg_{1/3}Ta_{2/3})O_3$[BMT] 세라믹스의 마이크로파 유전특성)

  • Hwang, Tae-Kwang;Lim, Sung-Soo;Chung, Jang-Ho;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.84-87
    • /
    • 2000
  • The microwave dielectric properties of complex perovskite-structured $Ba(Mg_{1/3}Ta_{2/3})O_3$ ceramics were investigated with calcining condition. The BMT ceramics were prepared by conventional mixed oxide method. Calcining conditions were $1200^{\circ}C$ for 10hr., $1300^{\circ}C$ for 2hr., and 5hr., respectively. And the specimens were sintered at $1650{\mu}m$. The structural and microwave properties of BMT ceramics were investigated by XRD, SEM and network analyzer. In the case of BMT ceramics calcined at $1300^{\circ}C$ for 5 hr., dielectric constant, quality factor and temperature coefficient of resonant frequency were 20.26, 31,144(at 1GHz), 6.11[ppm/$^{\circ}C$], respectively.

  • PDF

Microwave Dielectric Properties of CaZr(BO3)2 Ceramics (CaZr(BO3)2 세라믹스의 마이크로웨이브 유전특성)

  • Nam, Myung-Hwa;Kim, Hyo-Tae;Kim, Jong-Hee;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.173-178
    • /
    • 2007
  • The microstructure and microwave dielectric properties of dolomite type borates, $CaZr(BO_3)_2$ ceramics prepared by conventional mixed oxide method were explored. The sintering temperature of $CaZr(BO_3)_2$ ceramics could be reduced from $1150^{\circ}C\;to\;925^{\circ}C$ with little amount of sintering additives. Microwave dielectric properties of 3 wt% $Bi_2O_3-CuO$ added $CaZr(BO_3)_2$ ceramics sintered at $925^{\circ}C$ were $K{\approx}10.4,\;Q{\times}f{\approx}80,000GHz\;and\;TCF{\approx}+2ppm/^{\circ}C$. Thus obtained LTCC tape was co-fired with Ag paste for compatibility test and revealed no sign of Ag reaction with the ceramics. Therefore, $CaZr(BO_3)_2$ ceramics is considered as a possible candidate material for low temperature co-fired multilayer devices.

Microwave Dielectric Properties of BZCT Ceramics (BZCT 세라믹의 마이크로파 특성에 관한 연구)

  • 이문기;최의선;류기원;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.870-875
    • /
    • 2002
  • Ba(Zn$_1$-xCox)TaO$_3$[BZCT] ceramics were Prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of 1450∼1550$\^{C}$ for 5 hr in air. The crystal structure of BZCT ceramics was investigated by the XRD. The microstructure of the specimens were observed by SEM. The structural properties of BZCT specimens were investigated as a function of composition and sintering temperature. All BZCT ceramics sintered over 1550$\^{C}$ were showed a polycrystalline complek perovskite structure without second phases and any unreacted materials. The density of BZCT (70/30) specimen sintered at 1550$\^{C}$ was 6.31g/㎤. In the case of the BZCT(70/30) ceramics sintered at 1550$\^{C}$ for 5 hours, dielectric constant, qualify factor and temperature coefficient of resonant frequency for microwave dielectrics application were a good value of 29, 16,468 at 10㎓ and -4.4 ppm/$\^{C}$, respectively.

Cation Ordering and Microwave Dielectric Properties of $Ba(Mg_{1/3}Nb_{2/3})O_3$ Ceramics: II. Local Order-Disorder Phase Transition and Second Phase formation ($Ba(Mg_{1/3}Nb_{2/3})O_3$세라믹스의 양이온 규칙구조와 유전특성: II. 국부적 규칙-불규칙 상전이와 이차상 생성 거동)

  • 김영웅;박재환;김긍호;김윤호;박재관
    • Korean Journal of Crystallography
    • /
    • v.12 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • We have studied the effect of sintering temperature and time on the cation ordering and second phase formation in Ba(Mg/sub 1/3/Nb/sub 2/3/)O₃(BMN) microwave ceramics by using transmission electron microscopy. The relationship between the structural-chemical behavior arid microwave dielectric properties has also been investigated. It is revealed that according to the sintering conditions the BMN ceramics show very diverse local ordering behavior, such as the development of domain twinning and "core-shell"-structured grains and the formation of local disordered domains, though having 1 : 2 cation ordering structure basically. The disordered structure is found in Mg-excess region. Such local chemical variation seems to be caused by the formation of BaNb₂O/sub 6/-like second phase in its neigh-boring grain boundary. The microwave dielectric quality factor of the ceramics decreases greatly with the increase of the structural-chemical inhomogeneity and diversity.

  • PDF

Structural and Microwave Dielectric Properties of the $0.9MgTiO_3-0.1SrTiO_3$ Ceramics with Sintering Temperature (소결온도에 따른 $0.9MgTiO_3-0.1SrTiO_3$ 세라믹스의 구조 및 마이크로파 유전특성)

  • Choe, Ui-Seon;Lee, Mun-Gi;Ryu, Gi-Won;Bae, Seon-Gi;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.294-298
    • /
    • 2000
  • The $MgTiO_3\; and \;$0.9MgTiO_3-0.1SrTiO_3$ ceramics were fabricated by the conventional mixed-oxide method. The sintering temperature and time were $1300^{\circ}C~1600^{\circ}C$, 2hr., respectively. The structural and microwave dielectric properties were investigated with sintering temperature and the application for the satellite communication microwave dielectric resonator was investigated. The coexistence of cubic $SrTiO_3$ and hexagonal TEX>$MgTiO_3$ structures in $0.9MgTiO_3-0.1SrTiO_3$ ceramics were found from X-ray diffraction patterns. In the case of $MgTiO_3$ ceramics, sphere phase and needle-like phase were coexisted. The $0.9MgTiO_3-0.1SrTiO_3$ ceramics observed sphere phase. The dielectric constants and temperature coefficient of resonant $frequency(\tauf)$ were increased with addition of $SrTiO_3$ but the quality factor was decreased. The dielectric constant, quality factor and $\tau$f of the;$0.9MgTiO_3-0.1SrTiO_3$ ceramics were 22.61, 10.928(at 1GHz) and $+50.26ppm/^{\circ}C$, respectively.

  • PDF

Dielectric Properties of Ceramic/Polymer Composites at Microwave Frequencies

  • Kim, Eung-Su;Jeon, Chang-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • Effects of particle size, crystal structures and multilayer structures of $ATiO_3$, $ATa_2O_6$, $ANb_2O_6$, $AWO_4$, and $AMoO_4$ (A=Ni, Mg, Zn, Co) ceramic fillers on the dielectric properties of polystyrene (PS), polypropylene (PP) and polytetrafluoroethylene (PTFE) polymer matrices were investigated at microwave frequencies. The microwave dielectric properties of $ATiO_3$ (ilmenite), $ATa_2O_6$ (tri-rutile), $ANb_2O_6$ (columbite), AWO4 (wolframite), and AMoO4 (wolframite) ceramics were largely dependent on the structural characteristics of oxygen octahedra. The dielectric constant (K) of the composites was increased with the ceramic content. However, the dielectric loss (tan ${\delta}$) of the composites was affected by the type of ceramics and the crystallinity of polymers. For the composites with same amount of ceramics, the K was decreased and the tan ${\delta}$ was increased with the particle size of ceramics. Also, the dielectric properties of the composites were dependent on the multilayer structures with different arrangements. Several theoretical models have been employed to predict the effective dielectric properties of the composites. The frequency dependence of dielectric properties and the temperature coefficient of resonant frequency (TCF) of the composites were also discussed.

  • PDF