• Title/Summary/Keyword: microsture

Search Result 3, Processing Time 0.019 seconds

Microstructure Observation of Pd-Cu-Ga system Dental Alloy in Clinical Heat Treatment (치과용 Pd-Cu-Ga 계 함금의 임상조건에 따른 미세조직 관찰)

  • 김기주;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.443-449
    • /
    • 1999
  • 현재 시판되고 있는 치과용 76.5%Pd-11.6%Cu-7.2^%GarP 합금의 주조상태 및 임상열처리에 따른 미세조직의 변화를 X-선 회절기, 광학현미경, 시차열분석기를 이용하여 관찰하였다. 주조상태, 탈개스 및 세리믹소성처리 후 미세조직은 Pd고용체와 금속간화합물 Pd2Ga으로 구성되어 나타났고, 이들 상들은 열처리에 따라 상당한 변화를 보였다. 또한 Pd은 아르곤 분위기 내의 산소와 반응하여 산화물 형성 및 분해로 인해 질량변화곡선(TG)이 변하였고, 시차열분석(DTA)에서는 약 815$^{\circ}C$ 정도에서 Pd2Ga에 기인하는 흡열피크를 확인하였다. 이러한 실험의 결과들은 Cu가 이원계 Pd-Ga 합금의 Ga의 고용량을 낮추어 공정반응이 저 Ga 쪽으로 이동하기 때문인 것으로 설명하였다. 그러나 앞으로 보다 명확한 상변태 규명을 위해서 TEM등의 분석장비를 사용하여 체계적인 연구가 요구된다.

  • PDF

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

Effects of Yittrium and Manganese on the PTCR Barium Titanate Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 합성한 PTCR Barium Titanate에 미치는 Y와 Mn의 효과)

  • 김복희;이정형;윤연현;최의석;정웅기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1169-1177
    • /
    • 1995
  • Barium nitrate and yittrium nitrate were dissolved into distilled water. Titaium hydroxide precipitated from titanium chloride with NH4OH was dissolved into nitric acid. Each aqueous solution was mixed for 12 hr in the composition of Ba1-xYxTiO3 (x=0.1∼0.6) and the concentration of mixed solution was 0.1 mol/ι. The mixed solution was sprayed with an ultrasonic atomizer and carried into an electric furnace which was kept at 900∼1000$^{\circ}C$ and pyrolyzed. Pyrolyzed powders were collected on the glass filter with vacuum pump. Aqueous Mn solutiion was added into the synthesized powders, mixed with ultrasonic vibration and sintered at 1300∼1400$^{\circ}C$. Synthesized powders were characterized with SEM, XRD, DT-TGA, and BET. Microsture and resistivity of sintered body were investigated with SEM and multimeter. The results of this experiment were as follows; 1) Yittrium dooped BaTiO3 powders were synthesized above 950$^{\circ}C$. 2) The average particle sizes of powders from BET specific surface area and SEM were 0.045$\mu\textrm{m}$, 0.046$\mu\textrm{m}$ respectively. The particle size distribution was narrow in the range of 0.1∼1.0$\mu\textrm{m}$ from SEM. 3) Room temperature resistivity and pmax/pmin of 0.4 mol% Y doped specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 102∼3 respectively. 4) Room temperature resistivity and pmax/pmin of 0.4 mol% Y and 0.04 at% Mn added specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 106∼7 respectively. 5) Grain growth was inhibited with addition of Y2O3 and enhanced in addition of Mn by 0.05 atm%.

  • PDF