• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.031 seconds

Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing (내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지)

  • Jae Ho Choi;Young Min Byun;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

Preparation and characterization of Zinc Oxide films deposition by (PVD) (PVD 코팅법에 의한 ZnO제조 및 특성)

  • Kim, Sung Jin;Pak, Hunkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.95.1-95.1
    • /
    • 2010
  • Transparent conducting ZnO films were deposited to apply DSSC Substrate on glass substrates at $500^{\circ}C$ by ionbeam-assisted deposition. Crystallinity, microstructure, surface roughness, chemical composition, electrical and optical properties of the films were investigated as a function of deposition parameters such as ion energy, and substrate temperature. The microstructure of the polycrystalline ZnO films on the glass substrate were closely related to the oxygen ion energy, arrival ratio of oxygen to Zinc Ion bombarded on the growing surface. The main effect of energetic ion bombardment on the growing surface of the film may be divided into two categories; 1) the enhancement of adatom mobility at low energetic ion bombardment and 2) the surface damage by radiation damage at high energetic ion bombardment. The domain structure was obtained in the films deposited at 300 eV. With increasing the ion energy to 600 eV, the domain structure was changed into the grain structure. In case of the low energy ion bombardment of 300 eV, the microstructure of the film was changed from the grain structure to the domain structure with increasing arrival ratio. At the high energy ion bombardment of 600 eV, however, the only grain structure was observed. The electrical properties of the deposited films were significantly related to the change of microstructure. The films with the domain structure had larger carrier concentration and mobility than those with the grain structure, because the grain boundary scattering was reduced in the large size domains compared with the small size grains. The optical transmittance of ZnO films was dependent on a surface roughness. The ZnO films with small surface roughness, represented high transmittance in the visible range because of a decreased light surface scattering. By varying the ion energy and arrival ratio, the resistivity and optical transmittance of the films were varied from $1.1{\times}10^{-4}$ to $2.3{\times}10^{-2}{\Omega}cm$ and from 80 to 87%, respectively. The ZnO film deposited at 300 eV, and substrate temperature of $500^{\circ}C$ had the resistivity of $1.1{\times}10^{-4}{\Omega}cm$ and optical transmittance of 85% in visible range. As a result of experiments, we provides a suggestition that ZnO thin Films can be effectively used as the DSSC substrate Materials.

  • PDF

Effects of Microstructure and Plate Orientation on the Acoustic Emission Behavior of an Al-Li 8090 Alloy (Al-Li 8090 합금의 미세조직과 이방성에 따른 음향방출 거동)

  • Lee, K.A.;Lee, C.S.;Jeong, H.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.4
    • /
    • pp.215-224
    • /
    • 1997
  • A study has been made to investigate the acoustic emission(AE) behavior during the tensile and fracture tests of an Al-Li 8090 alloy, and to correlate it with the deformation mechanisms as a function of microstructure and plate orientation. Mechanical tests and AE measurements were conducted on the specimens with different microstructures (the ${\delta}'$ phase dominant microstructure and the $S'+{\delta}'$ microstructure) and with different orientations (L and ST). In the ${\delta}'$ structure, continuous emissions were produced in both the L and ST oriented specimens, while only the burst emissions were observed to occur in the $S'+{\delta}'$ structure. It was inferred from the above results that continuous type emissions were mainly attributed to the shearing of coherent ${\delta}'$ precipitates in the ${\delta}'$ structure, while the burst type emissions were produced due to the shearing or microcracking of incoherent S' phase in the $S'+{\delta}'$ structure. As to the effect of plate orientation, the ST oriented specimens showed more burst emissions than the LT oriented ones. A large number of burst emissions produced in the ST specimen were presumably due to the rapid crack propagation along the intergranular boundary located parallel to the crack propagation direction.

  • PDF

Microstructure and dielectric properties in the La2O3-doped BaTiO3 system (La2O3 첨가에 따른 BaTiO3의 미세구조 및 유전특성)

  • Choi, Woo-Jin;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.103-109
    • /
    • 2020
  • The effect of La2O3 addition on the crystalline phase, microstructure, and dielectric properties of BaTiO3 has been studied as a function of the amounts of La2O3. 0.3 mol% TiO2-excess BaTiO3 powder was synthesized by solid-state reaction, and then the powder compacts with various amounts of La2O3 were sintered at 1250℃ for 2 hours. Room temperature XRD showed changes in the lattice parameters and a decrease of tetragonality (c/a) as the amounts of La2O3 increased. It can be explained that the phase transition from tetragonal to cubic phase occurred because La3+ replaced Ba2+ site, which increased the instability of the tetragonal phase. As La2O3 was added over 0.1 mol%, the critical driving force for growth (Δgc) increased over maximum driving force (Δgmax). As the result, the grain size decreased with La2O3 addition. Dielectric constant decreased as the amounts of La2O3 increased, which was analyzed with crystal structure and microstructure.

Effect of Seed Coating Layer on the Microstructure of NaA Zeolite Separation Layer Grown on ${\alpha}$-alumina Support (종결정 코팅층이 다공성 ${\alpha}$-알루미나 지지체 표면에 성장되는 NaA 제올라이트 분리층의 미세구조에 미치는 영향)

  • Kim, Min-Ji;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2014
  • NaA zeolite/${\alpha}$-alumina composite membranes were hydrothermally synthesized at $100^{\circ}C$ for 24 hr by using nanosize seed of 100 nm in diameter and an ${\alpha}$-alumina support of $0.1{\mu}m$ in pore diameter, and then effect of seed coating layer on the microstructure of NaA zeolite separation layer was systematically investigated. In cases when nanosize seed was coated with a monolayer, increment in seed coverage induced small grained and thick NaA zeolite separation layer. On the other hand, in case when nanosize seed was coated with a multilayer, much small grained and thick separation layer was formed. It was clear that an uniform monolayer seed coating is required to grow hydrothermally a thin and defect-free NaA zeolite separation layer. In the present study, it was clearly announced that seed coating layer is a key factor to determine the microstructure of NaA zeolite layer, secondary grown on a porous support.

Effect of F$e_2$P Addition on Microstructures of Sintered 4600 Steel (4600계 소결강의 조직에 미치는 F$e_2$P첨가의 영향)

  • Kim, Dong-Uk;Lee, Wan-Jae
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.428-435
    • /
    • 1992
  • AISI 4600 Iron powder was mixed with 0~1.0% phosphor as F$e_2$P powder and/or 0~0.8% carbon as graphite powder in rotating mixer. Mixed powder was pressed 800MPa in double-punch mould. Compacts were sintered at 115$0^{\circ}C$for 30 min. in vacuum or mixed hydrogen and nitrogen gas. Sintered compacts were ground and polished, and etched by 2% nital etchant. The microstructure was observed by image analyzer and optical microscope. Density and microhardness were tested by ASTM B3l2 and Microvickers hardness tester. The results obtained were as follows : (1) As the amount of F$e_2$P powder increased, sintered microstructure showed more densified effect and the grain size was larger. (2) The shape of pore was rounded and the number of pore was decreased by F$e_2$P addition. But mean pore size was larger with F$e_2$P content. (3) Simultaneous alloying addition of F$e_2$P and graphite brought about larger grain growth than respective addition. (4) Sintering atmosphere did not affect the microstructure. (5) Hardness of sintered compact increased with phosphrous and carbon content.

  • PDF

Effect of SiC Particle Size on the Microstructure and Mechanical Properties Of Al2O3-SiC Composite (Al2O3-SiC 복합재료의 미세조직 및 기계적 물성에 미치는 SiC 원료분말의 크기 영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • The effect of SiC particle size on the microstructures and mechanical properties of A1$_2$O$_3$-SiC composite was investigated. Two types of SiC powders having average particle sizes of 0.15 ${\mu}{\textrm}{m}$ and 3 ${\mu}{\textrm}{m}$ were used. The grain growth in the specimen containing 0.15 ${\mu}{\textrm}{m}$ SiC was effectively inhibited due to the fine SiC particles. However, after the formation of some abnormal grains, fast and exaggerated grain growth occurred which led to the microstructure of large grains with irregular shape. Fracture strength decreased due to the abnormal large grains. On the other hand, for specimen containing 3 ${\mu}{\textrm}{m}$ SiC showed normal grain growth behavior from initial sintering stage. Large SiC particles, however, effectively inhibited exaggerated grain growth after nucleation of a few abnormal grains. As a consequence, microstructure consisted of homogeneous elongated grains. In the A1$_2$O$_3$-2.5SiC(0.15 ${\mu}{\textrm}{m}$)-2.5SIC(3 ${\mu}{\textrm}{m}$) composite fabricated by mixing the two types of SiC powder, abnormal grain growth occurred. However, the good fracture strength was maintained regardless of microstructural changes in this specimen.

Effect of Puffing on Quality Characteristics of Red Ginseng Tail Root (팽화처리가 홍미삼의 품질특성에 미치는 영향)

  • Hong, Hee-Do;Kim, Young-Chan;Kim, Sung-Soo;Sim, Gun-Sub;Han, Chan-Kyu
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • Effect of puffing treatment on saponins, total sugars, acidic polysaccharide, phenolic compounds, microstructure and pepsin digestibility of dried red ginseng tail root were tested. Puffing samples of dried red ginsneng tail root were pre-pared at 20rpm, 15 $kg/cm^2$, $120{\sim}150^{\circ}C$, and for 30 min by a rotary type apparatus of 5 L capacity. Crude saponin content of puffing red ginseng tail root was increased 26.5% compared to non-puffing, especially $Rg_3$ content was increased from 0.49 mg/g to 0.72 mg/g. Total sugar content was not changed, but acidic polysaccharide content was slightly decreased from 7.15% to 6.44% by puffing treatment. Total phenolic compounds was increased from 7.86% to 9.94% by puffing. In terms of individual phenolic compounds, salicylic acid was quantified in puffing tail root, but gentisic acid was quantified in non-puffing. Syringic acid was the most predominant phenolic acid, increased to about 6 times by puffing treatment. On the other hand, gallic acid, p-coumaric acid, caffeic acid and ferulic acid were highly decreased. Microstructure of cross-section in puffing tail root was shown to more uniform shape compared to non-puffing. Pepsin digestibilities of puffing and non puffing red ginseng tail root were 22.4% and 46.2%, respectively (p<0.05). The results indicated that puffing treatment might be useful increasing the bioactive components, preference and digestibility.

Effect of h-BN Content on Microstructure and Mechanical Properties of AIN Ceramics (AIN 세라믹스의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 이영환;김준규;조원승;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.874-880
    • /
    • 2003
  • The effect of h-BN content on microstructure, mechanical properties, and machinability of AlN-BN based machinable ceramics were investigated. The relative density of sintered compact decreased with increasing h-BN content. The four-point flexural strength also decreased from 238 MPa of monolith up to 182 MPa by the addition of 30 vol% h-BN. Both low Young's modulus and residual tensile stress, formed by the thermal expansion coefficient difference between AIN and h-BN, might cause the strength drop in AlN-BN composite. The crack deflection, and pull-out phenomena increased by the plate-like h-BN. However, the fracture toughness decreased with h-BN content. The second phases, consisted of YAG and ${\gamma}$-Al$_2$O$_3$, were formed by the reaction between Al$_2$O$_3$ and Y$_2$O$_3$. During end-milling process, feed and thrust forces measured for AlN-(10~30) vol% BN composites decreased with increasing h-BN particles, showing excellent machinability. Also, irrespective of h-BN content, relatively good surfaces with roughness less than 0.5 m (Ra) could be achieved within short lapping time.