• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.034 seconds

Effect of nano-sized powder addition on the microstructure and superconducting properties of the YBCO thin film. (나노분말 첨가에 따른 YBCO 초전도 박막의 미셀구조 및 초전도 특성변화 연구)

  • Park, Jin-A;Kim, Byung-Joo;Im, Sun-Won;Ahn, Ji-Hyun;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1998-2000
    • /
    • 2005
  • The effects of the addition of nanocrystalline Y2O3 powder on the microstructure and superconducting properties have been investigated in YBCO films prepared by TFA-MOD process. Precursor solution doped with extra $Y_2O_3$ Powder was prepared by adding $Y_2O_3$ powder into a stoichiometic precursor solution with a cation ratio of Y:Ba:Cu=1:2:3. Coating solutions with and without $Y_2O_3$ doping were coated on $LaAlO_3(100)$ single crystal by a dip coating method, cacination and conversion heat treatments were performed at the controlled atmosphere containing water vapor Current carry capacity(Jc) of YBCO film was enhanced about 50% by $Y_2O_3$ doping. It is thought that the enhancement of Jc is due to the better connectivity of YBCO grains and/or the flux pinning by the presence of nanocrystalline $Y_2O_3$ Particles embedded in YBCO grains.

  • PDF

Characterization of structural and field-emissive properties of diamond films in terms of growth conditions and additive gases (증착변수 및 첨가가스에 따른 다이아몬드 박막의 구조적 물성 및 전계방출 특성의 변화 분석)

  • Park, Jae-Hyun;Lee, Tae-Hoon;Park, Chang-Kyun;Seo, Soo-Hyung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1571-1573
    • /
    • 2003
  • Diamond films including nanocystalline and graphite phase are grown by microwave plasma chemical vapor deposition using $N_2$ additives and negative substrate bias at growth step. The microstructure of the films is controlled by changing $N_2$ gas ratio and negative bias. Defects and grain boundaries between diamond and graphite are proposed to be crucial factors for forming the conducting path of electron emissions. The effect of growth parameters on the film microstructure are investigated by Raman spectroscopy and scanning electron microscopy(SEM). Electron emission characteristics are also examined in terms of the film growth conditions.

  • PDF

A Study on the Microstructure and Mechanical properties of Fe Aluminide alloys (Fe-Aluminide합금의 미세조직과 기계적 특성에 관한 연구)

  • Jo, Jong-Chun;Lee, Do-In;Lee, Seong-Jae;Choe, Byeong-Hak;Kim, Hak-Min
    • 연구논문집
    • /
    • s.22
    • /
    • pp.115-125
    • /
    • 1992
  • Mechanical properties and microstructure were investigated on vacuum induction melted $Fe_3A1$base alloys of $DO_3$ structure. Specal emphasis were put on the effect of alloy chemistry, grain size and process(rolling, directional solidification) on mechanical properties of Fe-22.5-39at.%Al at elevated temperature between room temperature and $800^{\circ}C$. grain size of as-cast alloys is refined by rolling from 1mm to $80\mum$. Tensile strength of Fe-24.lat.%AI was about 404MPa at the critical ordering temperature, and the fracture strain of the alloy was 1-2% at room temperature. An inverse temperature dependence of the strength is noticed as-cast $Fe_3A1$. The presence of Cr and Zr do not affect the room temperature ductility and high temperature strength. Fracture strain of directionally solidified(DS) $Fe_3A1$ is about 1%at room temperature, but is about 60%at. $T_C$(550^{\circ}C)$. Tensile strength of DS alloy is lower than that of as-cast alloy at $530^{\circ}C$ and $430^{\circ}C$. Failure mode at room temperature varies from transgranular fracture to intergranular fracture with the addition of Al. the failure mode also varies from mixed(transgranular+ intergranular) mode between room temperature and $500^{\circ}C$ to intergranular mode above $550^{\circ}C$

  • PDF

Effect of Annealing on Properties of SiC-$TiB_2$ Composites (SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

The Effect of Ce Substitution on Microstructure and Ferroelectric Properties of $Bi_4Ti_3O_{12}$ Thin Films Prepared by MOCVD (MOCVD로 증착된 $Bi_4Ti_3O_{12}$ 박막의 미세구조와 강유전성에 Cerium 첨가가 미치는 영향)

  • Kang, Dong-Kyun;Park, Won-Tae;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.12-13
    • /
    • 2006
  • Ferroelectric Cerium-substituted $Bi_4Ti_3O_{12}$ thin films with a thickness of 200 nm were deposited using the liquid delivery metal organic chemical vapor deposition process onto a Pt(111)/Ti/$SiO_2$/Si(100) substrate. At annealing temperature above $600^{\circ}C$, the BCT thin films became crystallized and exhibited a polycrystalline structure. The BCT thin film annealed at $720^{\circ}C$ showed a large remanent polarization ($2P_r$) of $44.56\;{\mu}C/cm^2$ at an applied voltage of 5V. The BCT thin film exhibits a good fatigue resistance up to $1{\times}10^{11}$ switching cycles at a frequency of 1 MHz with applied electric field of ${\pm}5\;V$.

  • PDF

Ferroelectric Properties and Microstructure of Pr-Substituted Bismuth Titanate Prepared by Chemical Solution Deposition (화학 용액 증착법으로 얻어진 $Bi_{4-x}Pr_{0.7}Ti_3O_{12}$ 박막의 강유전성과 미세구조에 관한 연구)

  • Kang, Dong-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.290-291
    • /
    • 2006
  • The effect of praseodymium substitution on the ferroelectric properties of $Bi_4Ti_3O_{12}$ thin films have been investigated. Ferroelectric Pr-substituted $Bi_4Ti_3O_{12}$ thin films were fabricated by chemical solution deposition onto Pt/Ti/$SiO_2$/Si substrates. The structure and morphology of the films were analyzed using Xray diffraction, and scanning electron microscopy, respectively. About 200-nm-thick BPT films grown at $720^{\circ}C$ exhibited a polycrystalline structure and showed excellent ferroelectric properties with a remanent polarization ($2P_r$) of $28.21\;{\mu}C/cm^2$ at an applied voltage of 5 V. The films a1so demonstrate fatigue-free behavior up to $10^{11}$ read/write switching cycles with 1 MHz bipolar pulses at an electric field of ${\pm}5\;V$.

  • PDF

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

Effect of PWHT and stress ratio on fatigue behavior of welded joints in steel (강용접부의 피로거동에 미치는 용접후열처리 및 응력비의 영향)

  • 김경수;임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.53-61
    • /
    • 1987
  • Post weld heat treatment(PWHT) is usually carried out to remove the residual stress and to improve the microstructure and mechanical properties of welded joints. By the way, welding structure transformed owing to PWHT and reheating for repair loads the random cycles fatigue as offshore welding structure of constant low cycle fatigue as pressure vessel, and then, pre-existing flaws or cracks exist in a structural component and those cracks grow under cyclic loading. Therefore, the effects of PWHT and stress ratio on fatigue crack growth behaviors were studied on the three regions such as HAZ, sub-critical HAZ and deposit metal of welded joints in SM53 steel. Fatigue crack growth behavior of as-weld depended on microstructure and fatigue crack growth rate of HAZ was the lowest at eac region, but after PWHT it was somewhat higher than that of as-wel. In case of applying the stress($10kg/mm^2$) during PWHT, fatigue crack growth resistance tended to increase in the overall range of .DELTA.K.

  • PDF

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

Microstructure and Electrical Conductivity of Cu-16 at % Ag Microcomposite (Cu-16 at % Ag 미세복합재료의 미세구조와 전도도)

  • Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.569-576
    • /
    • 1999
  • In this study, the effect of the microstructural evolution on the electrical of Cu-Ag microcomposite was investigated. The nature of interfaces between silver filaments and Cu matrix may have pronounced effects on the physical properties of Cu-Ag filamentary microcomposites, little is known about these interfaces. In heavily drawn Cu-Ag filamentary microcomposities, the microstructure is too fine and the interfacial area is too large to maintsin a stable internal dislocation structure because of closely spaced filaments. Rather, most dislocations are thought to be gradually absorbed at the interfaces as the draw ratio increases. The mechanical and electrical properties of Cu-Ag filamentary microcomposites wires were also examined and correlated with the microstructural change caused by thermomechanical treatments. The study on the electrical conductivity combined to resistivity in Cu-Ag filamentary microcomposites and the rapid increase of the electrical conductivity at high annealing temperatures is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities at 295K($\rho$\ulcorner/$\rho$\ulcorner) in as-drawn Cu-Ag microcomposites can also be explained by the contribution of the interface scattering.

  • PDF