• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.029 seconds

Effects of Mn, Cr, and Sr Additions on the Microstructure and Tensile Properties of Al-7Si-0.4Mg-1Fe Casting Alloy (Al-7Si-0.4Mg-1Fe 주조합금의 미세조직과 인장성질에 미치는 Mn, Cr 및 Sr 첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Cho, Jae-Ik;Jung, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The microstructure of Al-7Si-0.4Mg-1Fe alloy mainly consists of aluminum dendrites, Al-Si eutectics, and $Al_5FeSi$ needles. When Mn was added to the alloy, the substantial amount of $Al_5FeSi$ phase was changed into Al(Mn,Fe)Si, however the needle-like morphology was almost unchanged. Combined additions of Cr or Sr with Mn to the base alloy resulted in rod-like Al(Mn, Fe,Si)Si phase. The tensile properties of as-cast alloys were enhanced by the Mn addition, especially when it was added with Sr. The tensile properties after T6 heat treatment was a little improved with 0.7%Mn addition, but Cr or Sr additions with Mn didn't show any positive effect on the properties of heat-treated alloys.

The Effect of Heat Input on Fracture Toughness(CTOD) in Submerged Arc Offshore Steel Weldments (해양구조용강재의 SA용접부에서 입열량이 파괴인성에 미치는 영향에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Shin, Yong-Taek;Lee, Hae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.40-47
    • /
    • 2004
  • The influence of heat input on fracture toughness was investigated in SAW weldments, which were prepared at two different welding conditions in API 2W Gr.50 and EN10225 5420. By examining the fracture initiation point, refined areas(ICHAZ and SCHAZ) in weld metal was identified as local brittle zone, in which M-A constituents and coarsed grain size were observed. Impact values showed the most significant difference at root portion, and CTOD transition temperature was related with impact values obtained at root portion. Hardness values in refined area were less than columnar microstructure about 20 HV5.

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens (멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

Effect of weld thermal cycle on the HAZ toughness and microstructure of a Ti-oxide bearing steel (Ti산화물강의 HAZ인성 및 미세조직에 미치는 용접열 cycle의 영향)

  • 정홍철;한재광;방국수
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • HAZ impact toughness of Ti-oxide steel was investigated and compared to that of a conventional Ti-nitride steel. Toughness variations of each steel with weld peak temperatures and cooling rates were interpreted with microstructural transformation characteristics. In contrast to Ti-nitride steel showing continuous decrease in HAZ toughness with peak temperature, Ti-oxide steel showed increase in HAZ toughness above $1400^{\circ}C$ peak temperature. The HAZ microstructure of the Ti-oxide steel is characterized by the formation of intragranular ferrite plate, which was found to start from Ti-oxide particles dispersed in the matrix of the steel. Large austenite grain size above $1400^{\circ}C$ promoted intragranular ferrite plate formation in Ti-oxide steel while little intragranular ferrite plate was formed in Ti-nitride steel because of dissolution of Ti-nitrides. Ti-oxides in the Ti-oxide steel usually contain MnS and have crystal structures of TiO and/or $Ti_2O_3$.

  • PDF

Effects of laser power on hardness and microstructure of the surface melting hardened SKD61 hot die steel using Yb:YAG disk laser (Yb:YAG 디스크로 레이저 표면 용융 경화된 SKD61 열간금형강의 경도와 미세조직에 미치는 레이저 출력의 영향)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In this study, effect of laser power on hardness and microstructure of SKD61 Hot Die steel of which surface was melted and hardened with Yb:YAG disk laser was investigated. Beam speed was fixed at 70 mm/sec and distance between them was 0.8 mm about Laser surface melting. The only thing that was changed laser power. Laser powers were 2.0, 2.4 and 2.8 kW. No defect was found under all conditions. As the laser power increased, the penetration depth were deepened and the bead width was also widened. There was no hardness deviation of fusion zone at same laser power and it was higher than that of heat affected zone. In addition, the more laser power increased, the more hardness in fusion zone decreased. Fusion zone was macroscopically dendrite structure. However, core matric in dendrite was lath martensite of 100 nm size. There were $M_{23}C_6$ of 500 nm and the VC and $Mo_2C$ of a nano meters on boundary of dendrite.

Characteristic Evaluation Based on the Heat Treatment Conditions of Super Duplex Stainless Steel with 0.2% N as an Additive - Part 1: Mechanical Properties and Microstructure (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제1보: 기계적 특성 및 미세조직)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.46-50
    • /
    • 2008
  • Super duplex stainless steel has along life in severe environments because of its strength and corrosion resistance. If 0.2$\sim$0.3% Nitrogen in aninterstitial solid solution is added, the austenite structure is reinforced. This improves the solid solution hardening and the anticorrosionability. In this study, the mechanical properties and structures of the super duplex stainless steel with the 0.2% N additive were investigated to determine the effect of various volume fractions on the austenite phase. The various volume fractions and distributions of the austenite structure in the applied test specimens were obtained by changing the heat treatment temperature and cycle. The characteristics by amounts of the $\sigma$ phase obtained from the precipitation heat treatment were alsoinvestigated. From the results, when the austenite volume fraction increases, the tensile strength decreases and elongation increases. And the $\sigma$ phase was rapidly increased by increasing the heat treatment time. When the volume fraction of the $\sigma$ phase increased, tensile strength increased.

Effect of Pr6O11/CoO Ratio on Electrical Characteristics of ZPCD-Based varistor Ceramics (ZPCD계 바리스터 세라믹스의 전기적 특성에 Pr6O11/CoO 비의 영향)

  • 남춘구;김향숙
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.876-882
    • /
    • 2002
  • The microstructure and electrical characteristics of ZPCD (ZnO-$Pr_{6}O_{11}$-CoO-$Dy_2O_3$) -based varistor ceramics were investigated with various $Pr_{6}O_{11}$/CoO ratios and sintering temperatures. The density of varistor ceramics with $Pr_{6}O_{11}$=1.0 was almost constant with sintering temperature, whereas it was increased noticeably in $Pr_{6}O_{11}$=0.5. Increasing $Pr_{6}O_{11}$ content enhanced the densification for any CoO content and the density was greatly affected not by CoO content but by $Pr_{6}O_{11}$ content. The varistor ceramics with $Pr_{6}O_{11}$/CoO=0.5/l.0 exhibited a higher nonlinearity than any other composition ratios. In particular, the varistor ceramics sintered at $1350^{\circ}C$ exhibited the best electrical properties, with nonlinear exponent of 37.8, leakage current of 7.6 ${\mu}$A, and tan $\delta$ of 0.059.

Particle Size Effects on Microstructure Evolution and Microwave Dielectric Characteristics in $0.93MgTiO_3-0.07CaTiO_3$Ceramics

  • Lee, Jung-A;Kim, Jeong-Joo;Kim, Nam-Kyong;Cho, Sang-Hee;Hahn, Jin-Woo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.260-264
    • /
    • 1999
  • Effect of the particle size of $MgTiO_3$ and $CaTiO_3$ on the microstructural evolution during sintering of $0.93MgTiO_3-0.07CaTiO_3$ system was investigated. Microwave dielectric characteristics of the sintered ceramics were also measured. The microstructural evolutions were explained with an emphasis on the entrapping behavior of $CaTiO_3$ grain into the $MgTiO_3$ grain and were correlated with microwave dielectric characteristics. With an increasing particle size ratio between $CaTiO_3$and $MgTiO_3$, the fraction of entraped $CaTiO_3$ grains increased, which grain growth of $MgTiO_3$were concurrently accelerated due to decreasing drag force of its boundary migration. Besides, $CaTiO_3$-grain entrapment into the $MgTiO_3$grain interior led to decreaseing quality factor values.

  • PDF

Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3 Ceramics (Frit 함량이 다공질 Frit-Bonded 알루미나 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.529-533
    • /
    • 2010
  • Porous frit-bonded alumina ceramics were fabricated using alumina and frit as raw materials. The effects of frit content and sintering temperature on microstructure, porosity, and flexural strength were investigated at low temperature of $750{\sim}850^{\circ}C$. Increased addition of frit content or higher sintering temperature resulted in improved flexural strength of porous frit-bonded alumina ceramics. It was possible to produce frit-bonded alumina ceramics with porosities ranging from 35% to 40%. A maximum strength of 52MPa was obtained at a porosity of ~38% when 90 wt% alumina and 10 wt% frit powders were used.

Physical Properties of Korean Earthenware Containers Affected by Soy Sauce Fermentation Use

  • Seo, Gyeong-Hee;Yun, Jung-Hyun;Chung, Sun-Kyung;Park, Woo-Po;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.168-172
    • /
    • 2006
  • Soy sauce was fermented at $20^{\circ}C$ for 100 days in onggi containers (ethnic Korean earthenware) which had been fabricated using three different glazing treatments: unglazed, glazed only on the outside, and glazed on both surfaces. The changes in microstructure and permeability characteristics of onggi containers were examined after fermentation of soy sauce. The effect of repeated use of onggi containers on the fermentation was analyzed by the contact between an aqueous model solution and the onggi containers used once for soy sauce fermentation. The levels of reducing sugar and free amino acids produced from the dissolved starch and protein, respectively, in the solution were compared between the new and reused onggi containers. The moisture permeance and gas permeabilities of the onggi jars were progressively reduced with continuing use for soy sauce fermentation, probably due to clogging of micropores by solid materials. After having been used once for fermentation, the microbial cells and/or enzymes immobilized on the surface or in the micropores of the onggi containers seemed to contribute to accelerating the hydrolytic reactions of starch and protein.