• 제목/요약/키워드: microstructure effect

Search Result 2,436, Processing Time 0.024 seconds

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Effect of Hot-compaction Temperature on the Magnetic Properties of Anisotropic Nanocrystalline Magnets

  • Li, W.;Wang, H.J.;Lin, M.;Lai, B.;Li, D.;Pan, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.300-303
    • /
    • 2011
  • The effect of the hot-compaction temperature on the microstructure and magnetic properties of anisotropic nanocrystalline magnets was investigated. The hot-compaction temperature was found to impact both the magnetic properties and the microstructure of die-upset magnets. The remanence of the isotropic precursor increases slightly with the improved hot-compaction temperature, and the grains start to grow on the flake boundary at higher hot-compaction temperatures. After hot deformation, it was found that the change in the magnetic properties was the inverse of that observed with the hot-compaction temperature. Microstructural investigation showed that die-upset magnets inherit the microstructural characteristics of their precursor. For the die-upset magnets, hot pressed at low temperature, scarcely any abnormal grain growth on the flake boundary can be seen. For those hot pressed at higher temperatures, however, layers with large equiaxed grains could be observed, which accounted for the poor alignment during the hot deformation, and thus the poor magnetic properties.

Effect of Shape Magnetic Anisotropy of Amorphous Fe-B-P Nanoparticles on Permeability

  • Lee, Ji Eun;Tsedenbal, Bulgan;Koo, Bon Heun;Huh, Seok Hwan
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.589-594
    • /
    • 2020
  • Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry-, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.

Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)-codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to $10.4{\mu}m$ and decreased the sintered density from 5.47 to $5.37g/cm^3$. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at $900^{\circ}C$ were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density ($36.4{\mu}A/cm^2$). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from $2.49{\times}10^{17}$ to $6.16{\times}10^{17}/cm^3$, and the density of interface state increased from $1.34{\times}10^{12}$ to $1.99{\times}10^{12}/cm^2$. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.

Effect of Zn Addition on Corrosion Behavior of Mg-8%Al Casting Alloy (Mg-8%Al 주조 합금의 부식 거동에 미치는 Zn 첨가의 영향)

  • Hwang, In-Je;Moon, Jung-Hyun;Jun, Joong-Hwan;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.35 no.3
    • /
    • pp.53-61
    • /
    • 2015
  • Effects of Zn addition on the microstructure and corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys were investigated. With increasing Zn content, the amount of ${\beta}(Mg_{17}Al_{12})$ phase increased, while ${\alpha}$-(Mg) dendritic cell size became reduced. The corrosion rate decreased continuously with the increase in the Zn content. The evaluation of the microstructural evolution indicates that the improved barrier effect of ${\beta}$ particles formed more continuously along the dendritic cell boundaries and the incorporation of more ZnO into the surface corrosion product, by which the absorption of $Cl^-$ ions is impeded, are responsible for the better corrosion resistance in relation to the Zn addition.

Effect of Solution Annealing on the Microstructure and Mechanical Properties of Modified 440A Martensitic Stainless Steel (Mod. 440A 마르텐사이트 스테인리스강의 미세조직과 기계적 성질에 미치는 오스테나이트화 처리의 영향)

  • Kim, Young-Chul;Kwon, Soon-Doo;Jung, Byong-Ho;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.103-108
    • /
    • 2013
  • This study was investigated the effect of austenitizing treatment the microstructure and mechanical properties in modified 440A steel, and the results were as follows. The amount of remaining carbide decreases with increasing the austenitizing treatment temperature, and all carbide is completely dissolved at $1250^{\circ}C$. The amount of remaining carbide decreases with increasing the austenitizing treatment time, but the carbide remains insoluble up to 120 minutes at $1050^{\circ}C$. The strength and hardness gradually decrease with increasing the austenitizing treatment temperature and is significantly lower at $1250^{\circ}C$, while the elongation and the impact value rapidly increase. The strength and hardness rapidly decrease, the elongation and impact value rapidly insrease with increasing the austenitizing treatment time and exhibit no change at above 120 minutes. The austenitizing treatment modified 440A steel is required for temperature of above $1050^{\circ}C$ and time of above 60 minutes.

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

The Effect of $\beta$-Heat Treatment on the Microstructure and Mechanical Characteristics of Zircaloy-4 for Nuclear Fuel Cladding (핵연료 피복관용 지르칼로이-4의 미세조직과 기계적 특성에 미치는 $\beta$-열처리의 영향)

  • Koh, Jin-Hyun;Oh, Young-Kun;Kim, Gwang-Soo
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.589-594
    • /
    • 1999
  • The effect of $\beta$-heat treatment on th microstructure, mechanical properties and texture in the nuclear fuel cladding of Zircaloy-4 tubes was chosen at 1000, 1100 and 120$0^{\circ}C$, and the tubes were heat-treated by a high frequency vacuum induction furnace. Morphology of the second phase particles and $\alpha$-grain of as-received tubes were markedly changed by heat treatment. The average sizes of second phase particles of as-received and $\beta$-heat treated tubes were 0.1$\mu\textrm{m}$ and 0.076$\mu\textrm{m}$, respectively. However, the average sizes of second phase particles were not much changed in the $\beta$-heated temperatures. With increasing heat treatment temperatures, the 0.2% yield strength and the hoop strength were decreased because of changes in preferred orientation as will as $\alpha$-plate width. Heat treated Zircaloy-4 tubes exhibited texture changes but the preferred orientation of grains still remained.

  • PDF

Effect of Incident Ion Beam Energy on Microstructure and Adhesion Behavior of TiN Thin Films (TiN 박막의 미세조직 및 밀착력에 미치는 입사이온빔 에너지의 효과)

  • Baeg, C.H.;Hong, J.W.;Wey, M.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2005
  • Effect of incident ion beam energy on microstructure and adhesion behavior of TiN thin films were studied. Without ion beam assist, TiN film showed (111) growth mode which was thought to have the lowest deformation energy. As the ion beam assist energy increased, TiN film growth mode was changed from (111) to (200) mode. On the Si(100) substrate the critical incident energy for growth mode change was 100 eV/atom, however the critical assist energy was 121 eV/atom on the STD61 substrate. Grain size of TiN films increased with the assist ion beam energy. Finally, adhesion strength of TiN films bombarded above the critical ion assist energy showed 4~5 times higher values than that with lower bombard ion energy.

Effect of Trace Metallic Additives of Al-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Al-Fe-X)의 복합첨가의 영향(I))

  • 예길촌;김대영;서경훈;안덕수
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • The effect of trace metallic additives of Al-Fe-X on microstructure, glossiness and hardness of Zn electrodeposits was investigated by using sulfate bath. The preferred orientation of Zn deposits with Al-Fe additives was (10 l)(l:3,4,2), while that of Zn deposits with Al-Fe-X(Ni,Co) additives was either (002) or (002)+(103)ㆍ(104) mixed orientation. The preferred orientation of Zn deposits with Al-Fe-Cr additives changed from (002)+(10 l) to (10 l) orientation with increasing amount of Al additive. The surface morphology of the Zn deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Al-Fe additives increased in comparison with that of pure Zn deposit. That of the Zn deposits with Al-Fe-X additives was related to the morphology of the deposits and changed according to type of additives. The hardness of Zn deposits with Al-Fe-X(Ni,Co,Cr) additives was noticeably higher than that of Zn deposits with Al-Fe additives.