• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.029 seconds

Effects of Extrusion Ratio and Extrusion Temperature on Microstructure and Tensile Properties of SEN6 Magnesium Alloy (SEN6 마그네슘합금의 미세조직과 인장 특성에 미치는 압출비와 압출 온도의 영향)

  • H. J. Kim;J. Y. Lee;S. C. Jin;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.178-184
    • /
    • 2024
  • In this study, we investigated the effects of extrusion ratio and extrusion temperature on the microstructure and tensile properties of extruded Mg-6Al-0.3Mn-0.3Ca-0.2Y (SEN6) alloy. As the extrusion ratio and temperature increase, dynamic recrystallization during extrusion is promoted, leading to the formation of a fully recrystallized microstructure with increased grain size. Additionally, the increases in extrusion ratio and temperature lead to texture strengthening, exhibiting a higher maximum texture intensity. The extruded materials contain three types of secondary phases, i.e., Al8Mn4Y, Al2Y, and Al2Ca, with irregular or polygonal shapes. The quantity, size, distribution, and area fraction of the second-phase particles are nearly identical between the two materials. Despite its larger grain size, the tensile yield strength of the material extruded at 450 ℃ and an extrusion ratio of 25 (450-25) is higher than that of the material extruded at 325 ℃ and an extrusion ratio of 10 (325-10), which is mainly attributed to the stronger texture hardening effect of the former. The ultimate tensile strength is similar in the two materials, owing to the higher work hardening rate in the 325-10 extrudate. Despite differences in grain size and recrystallization fraction, numerous twins are formed throughout the specimen during tensile deformation in both materials; consequently, the two materials exhibit nearly the same tensile elongation.

The Effect of Sr Addition and Mold Preheating Temperature on the Solidification and Microstructure of Al-7wt%Si-0.3wt%Mg Alloy (Al-7wt%Si-0.3wt%Mg 합금의 응고 및 미세조직에 미치는 Sr 첨가와 금형예열온도의 영향)

  • Kwon, Il-Soo;Kim, Kyoung-Min;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.608-614
    • /
    • 1997
  • The effect of mold preheating temperature on the microstructure such as grain size, eutectic silicon morphology was investigated for the Al-7wt%Si-0.3wt%Mg alloy. Microstructural variations have been characterized as a function of Sr addition and cooling rate during solidification. Microstructures were correlated with cooling rate, local solidification time and eutectic nucleation temperature, etc. In this study, Sr addition caused increase of local solidification time, undercooling and reduction of eutectic plateau temperature. In logarithmic scale, local solidification time was in inverse proportion to cooling rate. Eutectic nucleation temperature was in inverse proportion to cooling rate of logarithmic scale. Increasing the cooling rate refined dendrite arm spacing and eutectic silicon. Dendrite arm spacing was logarithmically in inverse proportion to cooling rate. Without modifier addition, eutectic silicon was modified at cooling rate of $7^{\circ}C/s$ or higher.

  • PDF

The Study on the Effect of Processing Parameters on the Electromagnetic Properties of Mn-Zn Ferrites (Mn - Zn 페라이트의 전.자기적 물성에 미치는 공정변수의 영향 고찰)

  • 황진현;신명승;한영호
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.69-75
    • /
    • 1997
  • The effect of oxide additive system and $Po_2$ condition on the power loss, microstructure, initial permeability, ${\mu}_i$ vs. temperature curve of Mn-Zn ferrites has been investigated. The density and permeability increased with various additive systems while the power loss decreased. It was confirmed that the oxide additives are grain boundary materials and do not change the magnetic properties of Mn-Zn ferrites such as $T_{spm}$ and $T_c$. The ${\mu}_i$ vs. T curve indicated that $T_{spm}$ moved to the higher temperature as $Po_2$ increased. It was also confirmed that the microstructure of Mn-Zn ferrites was independent of the $Po_2$ control during cooling.

  • PDF

Effect of Substrate Rotation on the Phase Evolution and Microstructure of 8YSZ Coatings Fabricated by EB-PVD

  • Park, Chanyoung;Choi, Seona;Chae, Jungmin;Kim, Seongwon;Kim, Hyungtae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The effect of substrate rotation speed on the phase forming behavior and microstructural variation of 8 wt% yttria ($Y_2O_3$) stabilized $ZrO_2$ (8YSZ) coatings as a thermal barrier coating has been investigated. 8YSZ coatings with $100{\sim}200{\mu}m$ thickness were deposited by electron beam-physical vapor deposition onto a super alloy (Ni-Cr-Co-Al) substrate with a bond coating (NiCo-CrAlY). The width of the columnar grains of the 8YSZ coatings increased with increasing substrate rotation speed from 1 to 30 rpm at a substrate temperature range of $900{\sim}950^{\circ}C$. In spite of the different growth behaviors of coatings with different substrate rotation speeds, the phases of each coating were not changed remarkably. Even after post heat treatments with various conditions of the coated specimens fabricated at 20 rpm, only a change of color was noticeable, without any remarkable change in the phase or microstructure.

Effect of Brazing Condition on Tensile Properties in Brazing Joints of Inconel-625/Ni-201 Using MBF-30 (MBF-30을 사용한 Inconel-625/Ni-201 브레이징 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yu, Jeong-Woo;Park, Sang-Hyun;Kim, Chang-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • This study was carried out to investigate the effect of bonding temperature and holding time on microstructure and mechanical properties in brazing joints of Ni-base superalloy using MBF-30 (Ni-4.5Si-3.2B [wt.%]). The heating rate was $20^{\circ}C$/min to the bonding temperatures $1050^{\circ}C$, $1070^{\circ}C$, $1090^{\circ}C$ under high vacuum condition. The holding times were 100s, 400s, 900s and 1600s. $Ni_3B$ phases and proeutectic Ni were observed in the interlayer of Ni-201. Then, Ni3B and Ni3Si were found in the middle region of brazing joint. Cr-boride phase appeared in the interlayer of Inconel-625. Tensile strength and elongation were decreased at $1050^{\circ}C$-1600s, $1070^{\circ}C$-900s and $1090^{\circ}C$-400s. After observation the fracture specimens, There was Ni3B which is very brittle phase in the grain boundary of Ni201.

The Effect of Temperature and Microstructure on High Temperature Fatigue Crack Propagation Property in Ti-3Al-2.5V Alloy (Ti-3Al-2.5V 합금의 고온피로에 미치는 온도 및 미세조직의 영향)

  • 김현철;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.198-207
    • /
    • 1998
  • To determine the effect of temperature and microstructure on the fatigue crack propagation behavior in Ti-3Al-2.5V alloy, experimental investigations have been carried out with the specimens of different temperatures and different volume fractions of prime $\alpha$-phase. The temperatures employed were room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency of 20Hz. To obtain the different volume fractions of the primary $\alpha$-phase, specimens were solution-treated at $\alpha$+$\beta$ and above the $\beta$ region. From the experimental results, following conclusions were obtained. (1) ΔKth was observed to increase with the less volume fraction of the primary $\alpha$-phase. (2) As the temperature increased. (3) Microstructures having more primary $\alpha$-phase showed higher strength at the high temperatures.

  • PDF

The Effect of SiCp Size on the Mechanical Preperties of ($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 Hybrid Mg Composites (($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 하이브리드 Mg 복합재료의 기계적 특성에 미치는 SiCp크기의 영향)

  • 하창식;김봉룡;조경목;박익민;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.29-33
    • /
    • 2001
  • In the present study, AZ91Mg/$\textrm{Al}_2\textrm{O}_3$ short fiber+SiC particulates hybrid metal matrix composites(MMCs) were fabricated by squeeze casting method. Different particulate sizes of 45, 29 and $9\mu\textrm{m}$ were hybridized with 5% volume fraction to investigate the effect of SiC particulates size on microstructure, mechanical and thermal properties such as hardness, flexural strength, wear resistance and thermal expansion. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements. Some aggregation of SiC particulates caused by particle pushing was observed especially in the hybrid composites containing in fine particulates($9\mu\textrm{m}$). The hardness and flexural strength were improved by decreasing particulates size, whereas wear resistance improved by increasing particulates size because of large particulates restricting matrix wear from contacted stress. Regardless of particulates size, thermal expansion of composites was the same. This may be because the content of particulates was in all cases 5 volume fraction.1

  • PDF

Effect of Crystal Phases on the Properties of Sintered Glass-Ceramics for $CaO-MgO-Al_2O_3-SiO_2$ System ($CaO-MgO-Al_2O_3-SiO_2$계의 글라스-세라믹에서 결정상이 소결체에 미치는 영향)

  • 김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.558-564
    • /
    • 1992
  • The effect of composed phase in the hot pressed CaO-MgO-Al2O3-SiO2 glass-ceramic has been investigated through microstructure studies, thermal, physical and mechanical properties. Sintering was done in the condition at the temperature range 900~95$0^{\circ}C$ for 20~120 mins under 7.5 MPa unilateral pressure. Sintered ceramics were composed of diopside, anorthite, residual glass and the portion of each phase was dependent on the sintering temperature and the holding time: as the temperature increases, the amount of diopside increased and then the rate of increase of diopside reduced with increasing anorthite. The thermal expansion coefficient of hot pressed was reduced with increasing crystallinity of hot pressed and was in the range of 6.69~7.46$\times$10-6 K-1 below $600^{\circ}C$. The elastic constant of hot pressed increased with increasing crystallinity up to about 80%, but after that was reduced due to the change of microstructure. The flexural strength of sintered ceramics was decreased with higher temperature and holding time, while the fracture toughness of those increased. It was shown that the physical and mechanical properties of hot pressed ceramic were related to the fraction of composed sintered ceramics, similar to a particulate composite, to the crystallinity of 80% of the glass-ceramic.

  • PDF

The Effect of ZnO Addition on the Electric Properties and Microstructure of $Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$Ceramics ($Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$계 세라믹스의 전기적 특성과 미세구조에 미치는 ZnO 첨가영향)

  • 김민재;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1108-1114
    • /
    • 1999
  • Microstructure and electrical properties of ZnO-doped (0-5 mol%) 0.05 Pb(Mn1/3Sb2/3)O3-0.95 PZT ceramics were investigated. Sintering temperature was decreased to 100$0^{\circ}C$ due to eutetic reaction between PbO and ZnO. Grain-size increased up to adding 1mol% ZnO and then decreased. Compositions of grain and grain-boundary were investigated by WDS. Lattice parameter was decreased with ZnO addition. Density increased with ZnO addition and reached to the maximum of 7.84(g/cm2) at 2 mol% ZnO. The effect of ZnO on electrical properties of PMS-PZT was investigated. At 3mol% ZnO addition electromechanical coupling factor(kp) was about 50% and relative dielectric constant($\varepsilon$33/$\varepsilon$0) was 997 Mechanical quality factor(Qm) decreased with ZnO addition. Lattice parameters and tetragonality(c/a) were measured to investigate relationship between the electric properties and substitution of Zn2+. At 3 mol% ZnO tetragonality was maximiged at c/a=1.0035 Curie temperature (Tc) decreased slightly with ZnO addition.

  • PDF

Effect of the Initial Microstructure of Low Temperature Superconducting Monowire on Critical Current Density (초기 미세조직에 따른 저온 초전도 모노선재의 임계전류밀도 분석)

  • Kim, H.R.;Oh, Y.S.;Kim, S.J.;Lee, H.W.;Kim, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Increasing the critical current density of superconducting wire is one of the difficult challenges in the field of superconductivity. It is well known that the higher volume fraction of uniformly dispersed α-Ti is able to enhance the critical current density of superconducting material NbTi because α-Ti serves as a flux pinning center. The volume fraction of α-Ti highly depends on the grain size of NbTi because α-Ti precipitates at the grain boundaries or triple points. For this purpose, we investigated the effect of initial microstructures of NbTi obtained from hot rolling in various temperature conditions on the critical current density. In addition, subsequent heat treatment was assigned to precipitate α-Ti and groove rolling/cold drawing was adopted to produce a wire with a diameter of about 1.0 mm. It was observed that the band structure was formed after hot rolling at 500~600℃. It was also found that the volume fraction of α-Ti after hot rolling at 500~600℃ was higher and it led to the highest critical current density.