• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.035 seconds

Effect of AlF3 addition to the plasma resistance behavior of YOF coating deposited by plasma-spraying method (플라즈마-스프레이법에 의해 코팅한 옥시불화이트륨(YOF) 증착층의 플라즈마 내식성에 미치는 불화알루미늄(AlF3) 첨가 효과)

  • Young-Ju Kim;Je Hong Park;Si Beom Yu;Seungwon Jeong;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.153-157
    • /
    • 2023
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we mixed AlF3 powder with the solid-state reacted yttrium oxyfluoride (YOF) in order to increase plasma-etching resistance of the plasma spray coated YOF layer. Effects of the mixing ratio of AlF3 with YOF powder on crystal structure, microstructure and chemical composition were investigated using XRD and FE-SEM. The plasma-etching ratios of the plasma-spray coated layers were calculated and correlation with AlF3 mixing ratio was analyzed.

A Study of Transient Liquid Phase Bonding with Ni-foam/Sn-3.0Ag-0.5Cu Composite Solder for EV Power Module Package Application (Ni-foam/Sn-3.0Ag-0.5Cu 복합 솔더 소재를 이용한 EV 파워 모듈 패키지용 천이 액상 확산 접합 연구)

  • Young-Jin Seo;Min-Haeng Heo;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, Sn-3.0Ag-0.5Cu (wt.%, SAC305) solder dipping process was performed between Ni-foam skeleton with different pore per inch (PPI) to fabricate Ni-foam/SAC305 composite solder, and then applied to the transient liquid phase (TLP) bonding process to evaluate the microstructure and mechanical properties of the bonded joint. The Ni-foam/SAC305 composite solder preform consisted of Ni-foam and SAC305, and an intermetallic compound (IMC) having a (Ni,Cu)3Sn4 composition was formed at the Ni-foam interface. During TLP bonding process, the IMC at the Ni-foam interface was converted to (Ni,Cu)3Sn4+Au, and as the bonding time increased, the Ni-foam and SAC305 continuously reacted, and the bonded joint was converted into an IMC. And it was confirmed that the 130 PPI Ni-foam/SAC305 composite solder joint was converted into an IMC at the fastest rate. As a result of performing a shear test to confirm the effect of Ni-foam on mechanical properties, solder joints under all conditions exhibited excellent mechanical properties of 50 MPa or more in the early stages of the TLP bonding process, and the shear strength tends to increase as the bonding time increases.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.

Dielectric Properties of (Ba0.7Sr0.3-3x/2Lax)(Ti0.9Zr0.1)O3 Ceramics with La3+ Substitution for Sr2+-Site ((Ba0.7Sr0.3-3x/2Lax)(Ti0.9Zr0.1)O3 세라믹의 Sr2+-자리에 대한 La3+ 치환에 따른 유전 특성)

  • Si Hyun Kim;Ju Hye Kim;Eung Soo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.465-474
    • /
    • 2023
  • The effects of La3+ substitution for Sr2+-site on the crystal structure and the dielectric properties of (Ba0.7Sr0.3-3x/2Lax) (Ti0.9Zr0.1)O3 (BSLTZ) (0.005 ≤ x ≤ 0.02) ceramics were investigated. The structural characteristics of the BSLTZ ceramics were quantitatively evaluated using the Rietveld refinement method from X-ray diffraction (XRD) data. For the specimens sintered at 1,550 ℃ for 6 h, a single phase with a perovskite structure and homogeneous microstructure were observed for the entire range of compositions. With increasing La3+ substitution (x), the unit cell volume decreased because the ionic size of La3+ (1.36 Å) ions is smaller than that of Sr2+ (1.44 Å) ions. With increasing La3+ substitution (x), the tetragonal phase fraction increased due to the A-site cation size mismatch effect. Dielectric constant (εr) increased with the La3+ substitution (x) due to the increase in tetragonality (c/a) and the average B-site bond valence of the ABO3 perovskite. The BSLTZ ceramics showed a higher dielectric loss due to the smaller grain size than that of (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 ceramics. BSLTZ (x = 0.02) ceramics met the X7R specification proposed by the Electronic Industries Association (EIA).

Plasma resistance of Bi-Al-Si-O and Bi-Al-Si-O-F glass coating film (Bi-Al-Si-O와 Bi-Al-Si-O-F 유리 코팅막의 플라즈마 저항성)

  • Sung Hyun Woo;Jihun Jung;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.131-138
    • /
    • 2024
  • In this study, the microstructure and plasma resistance characteristics of 35Bi2O3-15Al2O3-50SiO2 (BiAl SiO) and 35Bi2O3-7.5Al2O3-50SiO2-7.5AlF3 (BiAlSiOF) glass layers coated on sintered alumina substrates were investigated according to the sintering conditions. The coated layers were formed using the bar coating method and then sintered at a temperature in the range of 700~900℃, which corresponds to the temperature before and after the hemisphere forming temperature, after a debinding process. The plasma resistance of the two coated glasses was approximately 2~3 times higher than that of the quartz glass, and in particular, the BiAlSiOF glass film with F added showed higher plasma resistance than BiAlSiO. It is thought to be due to the effect of suppressing the reaction with fluorine gas by adding fluorine to the glass. When the sintering time was increased at 700℃ and 800℃, the plasma resistance of both glasses improved, but when the sintering temperature was increased to 900℃, the plasma resistance decreased again (i.e., the etching rate increased). This phenomenon is thought to be related to the crystallization behavior of both glasses. The change in plasma resistance depending on the sintering conditions is thought to be related to the appearance of Al and Bi-rich phases.

Development predictive equations for tensile properties of S235JR structural steels after fire

  • Ozer Zeybek;Veysel Polat;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.243-252
    • /
    • 2024
  • Conventional carbon mild steel is a type of steel known for its low carbon content and generally used in the construction industry. Its easily formable and weldable properties make this steel a widely preferred material for buildings, bridges and various construction projects. Other advantages of these steels are their low cost and good mechanical properties. However, high temperatures have an impact on the microstructure and mechanical characteristics of these materials. When high temperatures are present during a fire, steels show significant microstructural changes. Elevated temperatures often decrease the mechanical characteristics of steels. For this purpose, evaluating the post-fire behavior of conventional structural mild steel is an important issue in terms of safety. A combined experimental and parametric study was conducted to estimate fire damage to steel buildings, which is an important issue in the construction field. Tensile test coupons were cut from conventional structural S235JR mild steel sheets with thicknesses ranging from 6 mm to 12 mm. These samples were exposed to temperatures as high as 1200 ℃. After heat treatment, the specimens were allowed to naturally cool to ambient temperature using air cooling before being tested. A tensile test was performed on these coupons to evaluate their mechanical properties after fire, such as their elastic modulus, yield strength, and ultimate tensile strength. The mechanical behavior of conventional S235JR structural steel changed significantly when the heating temperature reached 600℃. The thickness of the steel had a negligible effect on yield strength loss, with the highest measured loss being 50% for 8 mm thickness at 1200℃. For thinner sections (6 mm), yield strength decreased by up to 40%, while thicker samples (12 mm) showed similar reductions. Ultimate tensile strength also showed minimal changes up to 600℃, but beyond this point, a notable decline occurred, with approximately 30% strength loss at 1200℃. The modulus of elasticity remained almost constant up to 800℃, but at 1200℃, the loss reached around 20% for thicker sections (10 mm and 12 mm) and up to 35% for thinner sections (6 mm and 8 mm). Overall, high temperatures led to significant deterioration in both yield and ultimate strength, with a general loss of load-bearing capacity above 600℃. A new equation was formulated from experimental results to predict changes in the mechanical properties of S235JR steels. This equation offers a precise evaluation of buildings made from conventional structural S235JR mild steel after fire exposure. Furthermore, the empirical equation is applicable to low-strength steels with yield strengths ranging from 235 MPa to 420 MPa.

Anticalcification Treatment of Glutaraldehyde-fixed Bovine Pericardium with Amino Acids (The Effect of Ethanol, Glutamic Acid and Homocysteic Acid Treatment) (글루타르알데하이드로 고정한 소 심낭의 아미노산을 이용한 항석회화 처리(에탄올, 글루타믹 산, 호모시스테익 산 처리의 효과))

  • Lee, Cheul;Kim, Yong-Jin;Lee, Chang-Ha;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.42 no.4
    • /
    • pp.409-417
    • /
    • 2009
  • Background: Glutaraldehyde-fixed heterografts are prone to calcification after long-term implantation in human, and this is one of the limiting factors for the longevity of the heterografts used in cardiovascular surgery. The aim of the study was to evaluate the anticalcification effect of an ethanol and amino acids treatment on glutaraldehyde-fixed bovine pericardium. Material and Method: Bovine pericardial tissues were divided into 5 groups. Group 1 consisted of tissues fixed with glutaraldehyde, group 2 consisted of commercially available bovine pericardial valve tissues (Carpentier-Edwards PERIMOUNT), group 3 consisted of glutaraldehyde-fixed tissues treated with ethanol, group 4 consisted of glutaraldehyde-fixed tissues treated with ethanol and L-glutamic acid, and group 5 consisted of glutaraldehyde-fixed tissues treated with ethanol and homocysteic acid. The tissue microstructure was examined by light and electron microscopy. Tissue samples of each group were implanted into rat subcutaneous tissue for 3 $\sim$ 4 months and the calcium contents were measured after harvest. Result: The collagen fibers appeared to be well preserved in all the groups. The calcium contents of groups 2, 3, 4 and 5 (13.46$\pm$11.74, 0.33$\pm$0.02, 0.39$\pm$0.08 and 0.42$\pm$0.06 $\mu$g/mg, respectively) were all significantly lower than that of group 1 (149.97$\pm$28.25 $\mu$g/mg) (p<0.05). The calcium contents of groups 3, 4 and 5 were all significantly lower than that of group 2 (p<0.05). Conclusion: Treatment with ethanol alone or in combination with amino acids (L-glutamic acid or homocysteic acid) strongly prevented the calcification of glutaraldehyde-fixed bovine pericardium.

Rollover Effects on KOSPI 200 Index Option Prices (KOSPI 200 지수 옵션 만기시 Rollover 효과에 관한 연구)

  • Kim, Tae-Yong;Lee, Jung-Ho;Cho, Jin-Wan
    • The Korean Journal of Financial Management
    • /
    • v.22 no.1
    • /
    • pp.71-91
    • /
    • 2005
  • The object or this paper is to analyze the rollover effect on KOSPI 200 index option prices. Especially we analyze the implied volatilities of the options that became the near maturity options as the old one expired. For this analysis, a panel data of KOSPI 200 Index Option Prices from year 1999 to year 2001 were used, and following results were obtained. First, after controlling for the underlying index returns, strike prices and other pricing factors, the call option prices tend to decrease while the put option prices tend to increase during the week of expiry. Second, if one concentrates on the daily price changes, call option prices tend to go up on Thursday (as the old options expire), and then experience a price decrease on the following day, while the reverse is true for the put options. These results imply that the option prices are affected by some of the market micro-structure effects such as whether the option is the near maturity option. We conjecture that the reason for this is related to the undervaluation of KOSPI 200 futures. The results from this paper have implications on the timing of option trades. If one wants to buy put options, and/or sell call options, he has better off by executing his intended trades before the old options expire. On the other hand, if one wants to buy call options, and/or sell put options, hi has better off by executing his intended trades after the expiry.

  • PDF

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF

Effect of Hydration on Swelling Properties and Shear Strength Behavior of MgO-sand Mixture (수화 반응에 따른 MgO-모래 혼합물의 팽창 특성 및 전단 거동 변화)

  • Lee, Jihwan;Yoon, Boyoung;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.97-106
    • /
    • 2020
  • Swelling properties and shear strength behavior of MgO-Sand mixtures with hydration procese of MgO are compared according to different MgO contents (WMgO/WTotal=0, 30, 50, 70, 100%) in this study. The specimens are prepared by mixing with crushed MgO refractory bricks and silica sand. After hydration, the particle size and the specific gravity of MgO were decreases. Through microstructure observation and X-ray diffraction analysis, it is confirmed that MgO changes from the cubic structure of Periclase to the hexagonal cubic structure of Brucite after hydration. As the MgO content increases, both swelling rate and swelling pressure of the mixtures increase. WMgO/WTotal=30% specimen shows relatively low swelling pressure and swelling rate because produced Mg(OH)2 mainly fills the pores between sand particles. However, in the case of MgO more than 50%, swelling pressure and swelling rate increase significantly because Mg(OH)2 fills the pores of sand particles at first and then either pushes out sand particles or Mg(OH)2 particles after filling the pores. As a result of the direct shear test, before hydration, the mixtures show a dilative behavior on high MgO contents and a contractive behavior on low MgO contents. However, after hydration, the behavior of all mixtures changes to contractive behavior. The threshold fraction of fine (i.e., Mg(OH)2) contents of the hydrated MgO-Sand mixtures reveals approximately 60% compared with normalized shear strength.