• Title/Summary/Keyword: microstructure effect

Search Result 2,438, Processing Time 0.028 seconds

Effect of Acidic Environment on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials (산성 환경이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향)

  • Park, Misun;Kim, Jaehwan;Choi, Namki;Kim, Seonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • The aim of this study was to evaluate the effect of a range of acidic pH values on the push-out bond strength and surface morphology of tricalcium silicate materials: Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$. The standardized lumens of root slices prepared from extracted single-root human teeth were filled with Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$ according to manufacturer's instructions. The specimens were randomly divided into 4 groups (n = 20) for each material and then incubated for 4 days at $37^{\circ}C$; 3 acidic groups (butyric acid buffered at pH 4.4, 5.4, 6.4) and 1 control group (phosphate buffered saline solution at pH 7.4). The push-out bond strengths were then measured by using a universal testing machine and the surface morphology of each experimental group was analyzed by a scanning electron microscope. Biodentine$^{(R)}$ and Theracal$^{(R)}$ showed higher push-out bond strength compared with ProRoot MTA$^{(R)}$ after exposure to acidic pH values. A substantial change in the surface morphology of each material occurred after exposure to different pH values. In conclusion, the push-out bond strengths of Biodentine$^{(R)}$ and Theracal$^{(R)}$ are higher than the ProRoot MTA$^{(R)}$. Further the acidic environment weakens the push-out bond strength and microstructure of tricalcium silicate materials.

Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar

  • Nasir, Muhammad;Johari, Megat Azmi Megat;Yusuf, Moruf Olalekan;Maslehuddin, Mohammed;Al-Harthi, Mamdouh A.
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.403-416
    • /
    • 2020
  • This study investigated the effect of alkaline activators - NaOHaq (NH) (NH: 0-16 M) and Na2SiO3aq (NS) (NS/NH: 0-3.5) in the synthesis of silico-manganese fume (SMF) and ground blast furnace slag (BFS) blended alkali-activated mortar (AASB). The use of individual activator was ineffective in producing AASB of sufficient fresh and hardened properties, compared to the synergy of both activators. This may be attributed to incomplete dissolution and condensation of oligomers required for gelation of the binder. An inverse relationship was noted among the fresh properties and the NH concentration or NS/NH ratio. This was influenced by the dissolution and condensation of silicate monomers under polymerization process. The maximum 28-day strength of ~45 MPa, setting time of 60 min and flow of 182 mm was obtained with the use of combined activators (10M-NH and NS/NH=2.5). The combined activators at NS/10M-NH=2.5 constituted SiO2/Na2O, H2O/Na2O and H2O/SiO2 molar ratio of 1.61, 17.33 and 10.77, respectively. This facilitated the formation of C-S-H, C/K-A-S-H and C-Mn-S-H in the framework together with an increase in the crystallinity due to more silicate re-organization within the aluminosilicate chain. On comparison of the high concentrated with mild alkali synthesized product, it revealed that the concentration of OH- and Si monomers together with alkali metals influenced the dissolution of precursors and embedment of the constituent elements in the polymeric matrix. These factors eventually contributed to the microstructural densification of the mortar prepared with NS/10M-NH=2.5 thereby enhancing the compressive strength.

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.

Effects of pre-curing process on improvement of the compressive strength of IGCC-slag-based-geopolymer (IGCC 용융 슬래그로 제조된 지오폴리머의 강도증진에 Pre-curing이 미치는 영향)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.295-302
    • /
    • 2017
  • In this study, the effect of pre-curing process on the enhancement of mechanical properties of IGCC-slag-based-geopolymer was studied. Pre-curing is a process in which the green geopolymer is left at room temperature for a certain period of time prior to the high-temperature curing, and it is known as increasing the strength of a specimen. Therefore, in this experiment, the compressive strength of the geopolymers was measured according to various pre-curing conditions, and microstructure and crystal phase changes were observed by SEM and XRD, respectively. The W/S ratio was determined to be 0.26, which can offer the maximum geopolymer strength with easy molding ability, and the concentration of the alkali solution was 15 M. Pre-curing was performed at room temperature for 0 to 27 days. Compressive strength of the geopolymer made with pre-curing process increased by 36~87 % compared with the specimens made with no pre-curing process. Those improved compressive strength for the pre-cured geopolymer was confirmed owing to promotion effect of pre-curing process on generation of C-S-H gel and zeolite phases, which were analyzed using by XRD and SEM measurement.

Effect of graphene oxide on mechanical characteristics of polyurethane foam (산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향)

  • Kim, Jong-Min;Kim, Jeong-Hyeon;Choe, Young-Rak;Park, Sung Kyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.493-498
    • /
    • 2016
  • In the present study, graphene oxide based polyurethane foams were manufactured as a part of the development process of mechanically strengthened polyurethane foam insulation material. This material is used in a liquefied natural gas carrier cargo containment system. The temperature of the containment system is $-163^{\circ}C$. First, graphene oxide was synthesized using the Hummers' method, and it was supplemented into polyol-isocyanate reagent by considering a different amount of graphene oxide weight percent. Then, a bulk form of graphene-oxide-polyurethane foam was manufactured. In order to investigate the cell stability of the graphene-oxide-polyurethane foam, its microstructural morphology was observed, and the effect of graphene oxide on microstructure of the polyurethane foam was investigated. In addition, the compressive strength of graphene-oxide-polyurethane foam was measured at ambient and cryogenic temperatures. The cryogenic tests were conducted in a cryogenic chamber equipped with universal testing machine to investigate mechanical and failure characteristics of the graphene-oxide-polyurethane foam. The results revealed that the additions of graphene oxide enhanced the mechanical characteristics of polyurethane foam. However, cell stability and mechanical strength of graphene-oxide-polyurethane foam decreased as the weight percent of graphene oxide was increased.

The Effect of Oxygen on the Sintering of Titanium Powders (티타늄의 소결특성에 미치는 산소함량의 영향)

  • Choe, Jong-Seok;Lee, Dong-Hi;Choi, Good-Sun;Kil, Dae-Sup;Suh, Chang-Youl;Kim, Won-Baek;Ha, Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.464-470
    • /
    • 2000
  • The compacting and sintering behavior of titanium powders containing oxygen in the range of 1980~8450 ppm was examined. The powders were prepared by the hydride-dehydride (HDH) and by the deoxidation by solid state(DOSS) methods. Their compaction density ranged from 69.0% to 62.3% and decreased with the increase in the oxygen content. It was explained by the effect of oxygen on the hardness of powders. Unlike the compaction density, the oxygen content did not affect the apparent density greatly being 90.5$\pm$0.5% after sintering at $1100^{\circ}C$ for 2 hours. Their average grain size was $60\mu\textrm{m}$ and the size and distribution of pores were about the same for all cases. The hardness of sintered samples showed a linear increase with oxygen and could be expressed as VHN(sintered)= 135.5+64.3$\times$$(wt{\%}O_2)$ The exami-nation of fracture surface revealed that the ductile-brittle transition occurs at oxygen contents of 2987~5582 ppm.

  • PDF

Effect of Precipitates on the High Temperature Tensile Properties of Cast Alloy 718 (주조용 718합금의 고온 인장 성질에 미치는 석출물의 영향)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Ryu, Yeong-Su;Kim, In-Su;Jo, Hae-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.515-521
    • /
    • 2000
  • The effect of precipitates on the high temperature tensile properties of cast alloy 718 was investigated by phase extraction method and microstructural observation. The value of tensile strength and elongation gradually decreased with increasing testing temperature up to $760^{\circ}C$. Elongation of the alloy increased, while tensile strength decreased above 76$0^{\circ}C$. The amount of precipitates in the specimen that tensile tested at $760^{\circ}C$ showed maximum owing to stress assisted precipitation. Therefore, the alloy exhibited the lowest value of the elongation and the degree of decrease in yield strength at this temperature due to high flow stress of precipitates. Little amount of precipitate, especially $\gamma$' and $\gamma$", resulted in softening of the alloy at the temperature above $760^{\circ}C$.

  • PDF

A Micro Finite Element Analysis on Effects of Altering Monomer-to-Powder ]Ratio of Bone Cement During Vertebroplasty (골 시멘트 중합 비율 변경이 척추성형술 치료에 미치는 영향에 대한 비교 분석)

  • 김형도;탁계래;김한성
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.451-458
    • /
    • 2002
  • Osteoporosis is a systemic skeletal disease caused by low bone mass and the decrease of bone density in the microstructure of trabecular bone. Drug therapy(PTH Parathyroid hormone) may increase the trabecular thickness and thus bone strength. Vertebroplasty is a minimally invasive surgery foy the treatment of osteoporotic vertebral compression fracture. This Procedure includes Puncturing vertebrae and filling with Polymethylmethacrylate(PMMA). Although altering recommended monomer-to-Powder ratio affects material properties of bone cement, clinicians commonly alter the mixture ratio to decrease viscosity and increase the working time. The Purposes of this study were to analyze the effect of 4he monomer-to-powder ratio on the mechanical characteristics of trabecular. In this paper, the finite element model of human vertebral trabecualr bone was developed by modified Voronoi diagram, to analyze the relative effect of hormone therapy and vertebroplasty at the treatment of osteoporotic vertebrae. Trabeuclar bone models for vertebroplasty with varied monomer-to-Powder ratio(0.40∼1.07 ㎖/g) were analyzed. Effective modulus and strength of bone cement-treated models were approximately 60% of those of intact models and these are almost twice the values of hormone-treated models. The bone cement models with the ratio of 0.53㎖/g have the maximum modulus and strength. For the ratio of 1.07㎖/g, the modulus and strength were minimum(42% and 49% respectively) but these were greater than those for drug therapy. This study shows that bone cement treatment is more effective than drug therapy. It is found that in vertebroplasty, using a monomer-to-powder ratio different from that recommended by manufacturer nay significantly not only reduce the cement's material Properties but also deteriorate the mechanical characteristics of osteoporotic vertebrae.

Effect of Microwave Treatment on Korean Ginseng (고려인삼의 마이크로파 처리 효과)

  • Lee, Jae-Hag;Kum, Jun-Seok
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.405-410
    • /
    • 2010
  • The effect of microwave treatment on Korean ginseng was studied by measuring the changes in moisture, crude lipid, crude ash, crude protein, total dietary fiber and saponin contents, as well as changes in density, color and microstructure. Korean ginseng was treated with 100 or 200 watts of microwaves for 1 or 3 hrs, respectively, followed by drying using an oven at $60^{\circ}C$ for 96 hrs. The moisture contents decreased to 13.12~10.77% from an initial 76.26%. The amounts of lipid and ash were reduced in proportion to the time of microwave treatment and level of microwave power. The amount of protein in ginseng after microwave treatment did not significantly change. The amount of total dietary fiber increased after microwave treatment and the color of dried ginseng became dark. The amounts of ginsenoside-$Rb_1$, $Rb_2+Rb_3$, Rc, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ were reduced after treatment with 100 watts of microwave radiation for 1 and 3. The amounts of ginsenoside-$Rb_1$, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ after treatment with 200 watts of microwave radiation for 1 and 3 hr also reduced. On the other hand, the amounts of ginsenoside-$Rb_2+Rb_3$ and Rc after treatment of ginseng with 200 watts of microwave radiation for 1 and 3 hrs were increased.

Effect of Indium on the Microstructures and Mechanical Properties of Au-Pt-Cu Alloys (Au-Pt-Cu계 합금의 미세구조 및 기계적 특성에 미치는 첨가원소 Indium 효과에 관한 연구)

  • 이상혁;도정만;정호년;민동준
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.203-208
    • /
    • 2003
  • The effect of indium on the microstructure and hardness of a Au-Pt-Cu ternary alloy was investigated using optical microscopy, differential scanning calorimeter, scanning electron microscopy x-ray diffractometry, electron probe microanalizer and vickers hardness tester. A hardness of the solution floated Au-Pt-Cu-0.5In quarternary alloy with 0.5 wt.% was reached a maximum value (162 Hv) in 30 min at 550$^{\circ}C$ in the range of 150 to 950$^{\circ}C$ but that of the alloy was rapidly increased until 30 min with increasing aging time at 550$^{\circ}C$ and after that was remained almost constant value. Also, the microhardness of the matrix Au-Pt-Cu ternary alloy aged at 550$^{\circ}C$ for 30 min was continuously increased with indium contents and the grain size of Au-Pt-Cu ternary alloy decreased as increased indium contents. Analyses of EPMA and XRD revealed that the matrix Au-Pt-Cu-In quarternary alloy is composed of fcc structure and intermetallic InPt$_3$ precipitate with Ll$_2$ structure. Based on this investigation, it can be concluded that an increase in microhardness of Au-Pt-Cu-In quarternary alloy is due to precipitation hardening InPt$_3$ and grain size refinement.