• 제목/요약/키워드: microstructure effect

Search Result 2,438, Processing Time 0.029 seconds

The Effects of Citric Acid on HA coated Implant Surface (구연산 HA임플란트 표면구조에 미치는 영향)

  • Kim, Joong-Cheon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Shin, Seung-II
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.575-584
    • /
    • 2007
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, and HA coated surface were utilized. Pure titanium machined surface and HA coated surface were rubbed with pH 1 citric acid for 30s., 45s., 60s., 90s., and 120s. respectively. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. The specimens showed a few shallow grooves and ridges in pure titanium machined surface implants. The roughness of surfaces conditioned with pH 1 citric acid was slightly increased. 2. In HA-coated surfaces, round particles were deposited irregularly. The specimens were not significant differences within 45s. But, began to be changed from 60s. The roughness of surfaces was lessened and the surface dissolution was increased relative to the application time. In conclusion, pure titanium machined surface implants and HA coated surface implants can be treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

Effect of Additives of Sintering and Mechanical Properties of $Si_3 N_4$ Bonded SiC ($Si_3 N_4$ 결합 SiC의 소결과 기계적 특성에 미치는 첨가제의 영향)

  • Baik, Yong-Hyuck;Shin, Jong-Yoon;Jung, Jong-In;Han, Chang
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.511-516
    • /
    • 1992
  • In this study, SiC powder and Si powder were used as the raw materials. Mixture was prepared with addition of Al2O3 and Fe2O3 at 0.1~0.5wt% respectively. After this step, the mixture was pressed and nitrided for 30 hrs at 140$0^{\circ}C$ under NH3-N2 atmosphere. Mechanical properties of sintered specimens were investigated from measurement of porosity, bulk density and three point bending test. nitration reaction extent was observed at the change of mass before and after reaction, and the microstructure and the change of $\alpha$-Si3N4 and $\beta$-Si3N4 were observed by XRD and SEM. In the current work, the results are as follows 1. When Fe2O3 added, the nitridation increased with the content of Fe2O3, and the bending strength was increased from 0.1 wt% to 0.3 wt%, and decreased to 0.5 wt%. 2. When Al2O3 added, the nitridation and the bending strength increased little by little with the content of Al2O3 3. The bending strength of the specimen added with Fe2O3 were higher than that with Al2O3. Because the specimens contained Fe2O3 had much more the whisker type crystal of Si3N4 contributing to strength than contained Al2O3.

  • PDF

Effect of Pulse Frequency on the Properties of ZnO:Al Thin Films Prepared by Pulsed DC Magnetron Sputtering (펄스 DC 마그네트론 스퍼터링법에 의한 ZnO:Al 박막 증착시 펄스 주파수의 영향)

  • 고형덕;이충선;태원필;서수정;김용성
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.476-480
    • /
    • 2004
  • AZO (Al-doped ZnO) thin films were deposited on glass by pulsed magnetron sputtering method, and their structural, electrical and optical properties were investigated. XRD patterns showed that a highly c-axis preferred AZO film was grown in perpendicular to the substrate when pulse frequency of 30 ㎑ was applied to the target. Microstructure of thin films showed that the fibrous grain of tight dome shape was grown. The deposition rate decreased linearly with increase of pulse frequency, and the lowest resistivity was 8.67${\times}$10$\^$-4/ $\Omega$-cm for the film prepared at pulse frequency of 30 ㎑. The optical transmittance spectra of the films showed a very high transmittance of 85∼90%, within visible wavelength region and exhibited the absorption edge of about 350 nm. The characteristics of the low electrical resistivity and high optical transmittance of AXO films suggested a possibility for the application to transparent conducting oxides.

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

Effect of Additives and Cooling Rates on the Electrical Resistivity of $BaTiO_3$ Ceramics: (II) Multi-Component Systems of $TiO_2$, $SiO_2$ and $Al_2O_3$ Additives ($BaTiO_3$ 세라믹스의 전기저항에 미치는 첨가제와 냉각속도의 영향: (II) $TiO_2$, $SiO_2$$Al_2O_3$ 복합첨가)

  • 염희남;하명수;이재춘;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.803-809
    • /
    • 1991
  • Microstructure, room temperature resistivity and temperature coefficient of resistance of BaTiO3 ceramics were characterized and measured in this study. The basic composition of the BaTiO3 cremics was formed by adding 0.25 mol% Dy2O3 and 0.07 mol% MnO2 to the BaTiO3 composition. Samples of the BaTiO3 ceramics were prepared by adding various amounts of the TiO2, SiO2 and Al2O3 to the basic composition. An addition of 1 mol% TiO2, 2 mol% SiO2 and 0.5 mol% Al2O3 to the basic composition resulted both the values of the room temperature resistivity and the temperatured coefficient being maxium. Meanwhile, an addition of 1 mol% TiO2 and 1 mol% Al2O3 to the basic composition resulted the value of the room temperature resistivity maxium and the temperature coefficient minimum. The temperature coefficient showed a maximum value as well as a minimum value when the three kinds of the additives were added together to the basic composition of the BaTiO3 ceramics. Maxed phases of BaTi3O7, BaTiSiO5 and BaAl2Si2O8 were present at the grain boundary.

  • PDF

Low-Temperature Sintering of Barium Calcium Zirconium Titanate Lead-Free Piezoelectric Ceramics

  • Fisher, John G.;Lee, Dae-Gi;Oh, Jeong-Hyeon;Kim, Ha-Nul;Nguyen, Dieu;Kim, Jee-Hoon;Lee, Jong-Sook;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • The need for lead-free piezoceramics has caused a renewal of interest in $BaTiO_3$-based systems. Recently, it was found that ceramics in the $(Ba,Ca)(Zr,Ti)O_3$ system have properties comparable to those of $Pb(Zr,Ti)O_3$. However, these ceramics require rather high sintering temperatures of $1450-1550^{\circ}C$. In this work, the effect of $TiO_2$ and CuO addition on the sintering behavior, microstructure, dielectric and piezoelectric properties of $(Ba_{0.85}Ca_{0.15})(Zr_{0.1}Ti_{0.9})O_3$ (BCTZ) ceramics will be discussed. BCTZ ceramics were prepared by the mixed oxide route and 1 mol % of $TiO_2$ or CuO was added. Undoped and doped ceramics were sintered at $1350^{\circ}C$ for 1-5 h. CuO was found to be a very effective sintering aid, with samples sintered for 1 h at $1350^{\circ}C$ having a bulk density of 95% theoretical density; however the piezoelectric properties were greatly reduced, probably due to the small grain size.

The effect of microstructure of electrical discharge machinable silicon nitride on wear resistance (방전가공용 질화규소의 미세조직이 내마모에 미치는 영향)

  • 이수완;김성호;이명호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Silicon nitride is hard and tough ceramic material. Hereby, mechanical machinability is very poor. It has also high electrical resistance. Silicon nitride of extremely high electrical resistivity becomes conductive ceramic composite by adding 30 wt% TiN. Ceramics with high electrical conductivity can be electrical discharge machined. Using by the Electrical Discharge Machining (EDM) technique. $Si_3N_4-TiN$ ceramic composite with high electrical conductivity is utilized to make metal working tool. These tool materials have severe wear problem as well as oxidation. Post HIP processing after sintering $Si_3N_4-TiN$ ceramic composites was performed. The tribological property of $Si_3N_4-TiN$ composite as a function of content of TiN was investigated in air, at room temperature. The hardness, fracture toughness, and flexural strength were compared with the wear volume. SEM observation of wear tracks can make an explanation of wear mode of $Si_3N_4-TiN$ composite.

  • PDF

The effect of $Al_2O_3$ on mechanical strength and microstructure of TZ-8YS solid oxide fuel cell electrolyte ($Al_2O_3$가 TZ-8YS SOFC 전해질의 기계적 강도 및 미세구조에 미치는 영향)

  • 배동식;이준성;최성철;한경섭
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.145-150
    • /
    • 1998
  • The electrical and mechanical properties of the 8 mol% yittria-stabilized zirconia and alumina composites have been examined as a function of the alumina content. The 3-point bending strength and fracture toughness of the composites increased with increasing alumina content up to 20 wt%. The average grain size of the composites decreased with increasing alumina content up to 20 wt%. The composite with 5 wt% $Al_2O_3$ showed a 3-point bending strength of 310 MPa and fracture toughness about $7.8MPa\cdot\textrm m^{1/2}$. The electrical conductivity of the composites at $1000^{\circ}C$ increased slightly with increasing alumina content up to 10 wt% and decreased monotonically with alumina content. The conductivity of the TZ-8YS with 5 wt% alumina was 0.4 S/cm at $1000^{\circ}C$.

  • PDF

A study on the magnetic properties and microstructure of spin-valve type multilayer for giant magnetoresistance (스핀밸브형 거대자기저항 다층박막의 자기적 특성 및 미세구조에 관한 연구)

  • 노재철;이두현;이명신;윤대호;서수정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • The exchange anisotropy is the unidirectional magnetic anisotropy which comes from exchange interaction between antiferromagnetic layer and ferromagnetic layer. The application of this phenomenon to MR read head and spin-valve type GMR (Giant Magnetoresistance) head has been studied extensively. In our study, we intended to apply exchange anisotropy of NiO/NiFe bilayer to spin-valve type GMR element. Above all, we studied the exchange anisotropy of NiO/NiFe bilayer, and focused especially on the effect of NiO deposition condition. And we found that Ar pressure during NiO deposition was crucial factor for the exchange anisotropy of NiO/NiFe bilayer. The lower the Ar pressure is, the better the characteristics of exhange anisotropy is. Then, we applied this optimum condition of NiO/NiFe bilayer to spin-valve type GMR element. Finally we got spin-valve type GMR element which had 3.6 % MR ratio, 16 Oe switching field, and 0.25 %/Oe sensitivity.

  • PDF

The effect of the processing parameters on the growth of GaN thick films by a sublimation technique (승화법에 의한 GaN 후막성장시 공정변수의 영향)

  • 노정현;박용주;이태경;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.235-240
    • /
    • 2003
  • The development of large area GaN substrates is one of important issues in expanding of GaN-based applications. In order to investigate the possibility, GaN thick films were grown by a sublimation technique, using MOCVD-GaN films grown on a sapphire as a seed-crystal substrate and a commercial GaN powder as a source material. The pressure in chamber under the fixed flow rate of $N_2$ gas and $NH_3$ gas was kept at 1 atmosphere and the effects of the various processing parameters such as the distance between source material and seed crystal, the temperature of top- and bottom heater and the growth time during the growth of GaN thick film were investigated. The growth feature and microstructure of the GaN thick films were observed by SEM and XRD. The optical bandgap properties and the defects were evaluated by the PL measurement. By these results, the growth conditions such as the distance between the GaN source and the seed substrate, the growth temperature and the growth time were determined for the satisfied growth of GaN thick films.