• Title/Summary/Keyword: microstructure effect

Search Result 2,438, Processing Time 0.029 seconds

Electrical Property Changes of $\textrm{NO}_X$ Sensitive $\textrm{WO}_3$ Thin Films as Applied DC Voltages on 8YSZ Substrate (8YSZ 기판에 증착한 $\textrm{WO}_3$ 박막의 DC 전압에 따른 $\textrm{NO}_X$ 감지특성)

  • 전춘배;박기철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.8-12
    • /
    • 1999
  • $\textrm{WO}_3$ semiconductive film, which is known to have a sensitivity on $\textrm{NO}_X$ gas was prepared on 8YSZ (8% Yttria stabilized $\textrm{ZrO}_2$) ionic conductor substrate that has oxygen ion pumping effect. Microstructure and electrical properity, especially $\textrm{NO}_X$ sensitivity as a function of DC voltage applied to 8YSZ substrate was examined. When the $\textrm{WO}_3$ film was annealed, it showed amorphous structure, while crystallization was occurred at $600^{\circ}$C revealing orthorhombic phase of $\textrm{WO}_3$. As the annealing temperature increases, (111) and (001) peaks of $\textrm{WO}_3$ film was enhanced. At $400^{\circ}C$ when DC voltage was applied, comparing with no DC bias, more stable and large response characteristics was showed, and the best sensitivity was observed at 2V. Recovery characteristics of NO gas was much better that that of $\textrm{NO}_2$ gas.

  • PDF

The Effect of Inhibitors on the Electrochemical Deposition of Copper Through-silicon Via and its CMP Process Optimization

  • Lin, Paul-Chang;Xu, Jin-Hai;Lu, Hong-Liang;Zhang, David Wei;Li, Pei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.319-325
    • /
    • 2017
  • Through silicon via (TSV) technology is extensively used in 3D IC integrations. The special structure of the TSV is realized by CMP (Chemically Mechanical Polishing) process with a high Cu removal rate and, low dishing, yielding fine topography without defects. In this study, we investigated the electrochemical behavior of copper slurries with various inhibitors in the Cu CMP process for advanced TSV applications. One of the slurries was carried out for the most promising process with a high removal rate (${\sim}18000{\AA}/Min$ @ 3 psi) and low dishing (${\sim}800{\AA}$), providing good microstructure. The effects of pH value and $H_2O_2$ concentration on the slurry corrosion potential and Cu static etching rate (SER) were also examined. The slurry formula with a pH of 6 and 2% $H_2O_2$, hadthe lowest SER (${\sim}75{\AA}/Min$) and was the best for TSV CMP. A novel Cu TSV CMP process was developed with two CMPs and an additional annealing step after some of the bulk Cu had been removed, effectively improving the condition of the TSV Cu surface and preventing the formation of crack defects by variations in wafer stress during TSV process integration.

The Effect of Electroplating Parameters on the Compositions and Morphologies of Sn-Ag Bumps (Sn-Ag 범프의 조성과 표면 형상에 영향을 미치는 도금 인자들에 관한 연구)

  • Kim, Jong-Yeon;Yoo, Jin;Bae, Jin-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • With the variation of Ag concentration in bath, current density, duty cycle, additive and agitation for electroplating of Sn-Ag solder, the compositions and the morphologies of solder were studied. It was possible to controll Ag content in Sn-Ag solder by varying Ag concentration in bath and current density. The microstructure size of Sn-Ag solder decreased with increasing current density. Duty cycle of pulse electroplating and quantity of additive affected on Ag content of deposit and surface roughness. In this work eutectic Sn-Ag solder bumps with fine pitch of 30 $\mu\textrm{m}$ and height of 15 $\mu\textrm{m}$ was formed successfully. The Ag content of electrodeposited solder was confirmed by EDS and WDS analyses and the surface morphologies was analyzed by SEM and 3D surface analyzer.

  • PDF

Preparation and Properties of ZnSe/Zn3P2 Heterojunction Formed by Surface Selenization of Zn3P2 Film Deposited on ZnTe Layer

  • Park, Kyu Charn;Cha, Eun Seok;Shin, Dong Hyeop;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • ZnSe/$Zn_3P_2$ heterojunctions with a substrate configuration were fabricated using a series of cost-effective processes. Thin films of ZnTe and $Zn_3P_2$ were successively grown by close-spaced sublimation onto Mo-coated glass substrates. ZnSe layers thinner than 100nm were formed by annealing the $Zn_3P_2$ films in selenium vapor. Surface selenization generated a high density of micro-cracks which, along with voids, provided shunt paths and severely deteriorated the diode characteristics. Annealing the $Zn_3P_2$ film at $300^{\circ}C$ in a $ZnCl_2$ atmosphere before surface selenization produced a dense microstructure and prevented micro-crack generation. The mechanism of micro-crack generation by the selenization was described and the suppression effect of $ZnCl_2$ treatment on the micro-crack generation was explained. ZnSe/$Zn_3P_2$ heterojunctions with low leakage current ($J_0$ < $1{\mu}A/cm^2$) were obtained using an optimized surface selenization process with $ZnCl_2$ treatment. However, the series resistance was very high due to the presence of an electrical barrier between the ZnTe and $Zn_3P_2$ layers.

INFLUENCE OF BASALT FIBRES ON THE PROPERTIES OF FLY ASH BASED GEOPOLYMER BINDER

  • Temuujin, J.;Minjigmaa, A.;Davaabal, B.;Darkhijav, B.;Ruescher, C.H.
    • Particle and aerosol research
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 2016
  • The influence of basalt fibres on the compressive strength of the geopolymer type binders has been studied. For the experiments 2 types of the basalt fibres were used, namely chopped and spooled fibres. Both types of basalt fibres were 7-10 micron thick in diameter and cut into pieces of 6 mm length. The fibres were mixed with 1% weight to the fly ash powder, followed by the addition of the activator solution (8M NaOH). The pastes obtained were cured at $70^{\circ}C$ for 20 h revealing compact bodies. Compressive strength was measured after 7 days and microstructure observation performed with SEM. The cube bodies ($2{\times}2{\times}2cm$) reveal compressive strength of 47.25(4.03) MPa, while it decreased to 34.0(9.05) MPa in spooled basalt fibres and to 17.33(5.86) MPa in the chopped basalt fibres containing binder, i.e 76% and 36% of the strength without fibres, respectively. The much weaker compressive strength of the chopped fibres containing binder is related to the absence of significant adhesion between the geopolymer binder and the basalt fibres, forming voids instead. Alkali leaching effect of basalt fibres could probably explain the drop in the compressive strength with spooled and chopped fibres, respectively.

Texture Evolution during Primary Recrystallization and Effect of Number of Cold Rolling Passes, Heating Rate, and Si Contents in Grain-Oriented Electrical Steel (방향성 전기강판에서 1차 재결정시 Si 함량과 냉간압연 횟수, 승온 속도에 따른 집합조직 발달)

  • Jeon, Soeng-Ho;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.269-274
    • /
    • 2018
  • Grain-oriented electrical steel sheets are mainly used as core materials for transformers and motors. They should have excellent magnetic properties such as low core loss, high magnetic flux density and high permeability. In order to improve the magnetic properties of the electrical steel sheet, it is important to form Goss oriented grains with a very strong {110}<001> orientation. Recently, efforts have been made to develop Goss grains by controlling processes such as hot rolling, cold rolling, and primary and secondary recrystallization. In this study, the sheets containing 3.2 and 3.4wt.% Si were used, which were rolled with 1 and 10 passes with total thickness reduction of 89%. Heating was carried out for primary recrystallization with different heating rates of $25^{\circ}C/s$ and $24^{\circ}C/min$ until $720^{\circ}C$. The behavior of Goss-, {411}<148>-, and {111}<112>-oriented grains were analyzed using X-ray diffraction(XRD) and electron back-scatter diffraction(EBSD) analysis. The area fraction of Goss-oriented grains increased with the number of rolling passes during cold rolling; however, after the primary recrystallization, the area fraction of the Goss grains was higher and exact Goss grains were found in the specimens subjected to rapid heating after one rolling pass.

Effects of Mg and Cu Additions on Superplastic Behavior in MA Aluminum Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.435-439
    • /
    • 2018
  • MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range($10^{-4}-10^3/s$). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(${\varepsilon}_f$ < ~50%) in high temperature(748 K) tensile deformation at high strain rates(${\acute{\varepsilon}}=1-10^2/s$). ${\varepsilon}_f$ in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(${\varepsilon}_f={\sim}140%$ at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(${\varepsilon}_f$ > 500%). Warm-rolling(at 393-492 K) tends to raise ${\varepsilon}_f$. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates (${\acute{\varepsilon}}$< ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when ${\varepsilon}_f$ is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

Effect of $ZnCl_2$ on Formation of Carbonized Phenol Resin Anode

  • Kim Han-Joo;Hong Ji-sook;Son Won-Ken;Park Soo-Gil;Oyama Noboru
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2000
  • For replacing Li metal at Lithium ion Battery(LIB) system, we used carbon powder material which prepared by Pyrolysis of Phenol resin as starting material. It became amorphous carbon by Pyrolysis through it's self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. However, it has a problem with structural destroy due to weak carbon-carbon bond. So, we used $ZnCl_2$ as the pore-forming agent. This inorganic salt was used together with the resin serves not only as the pore-forming agent to form open pores, which grow into a three-dimensional network structure in the cured material, but also as the microstructure-controlling agent to form a loose structure doped with bulky dopants. We used SEM in order to find to difference of structure, and can calculate the distance of interlayer by XRD analysis. CV test showed oxidation and reduction.

Micromorphometric change of Ti$O_2$ blast implant surface conditioned with tetracycline-HCI (산화 티타늄 블라스팅 임프란트 표면구조에 대한 염산 테트라싸이클린의 영향)

  • Lee, Jung-Min;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk;Heo, Seong-Joo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.599-611
    • /
    • 2007
  • The present study was performed to evaluate the surface roughness and effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Ti$O_2$ surface Implant was utilized. Implant surface was rubbed with 50mg/ml Tetracycline-HCI solution for 0.5min, 1min, 1.5min, 2min, 2.5min and 3min respectively in the Tetracycline-HCI group. Then, specimens were measured surface roughness and processed for scanning electron microscopic observation. The results of this study were as follows. 1. Ti$O_2$ blast implant surface showed increased surface roughness 1.5 minute after treatment with Tetracycline-HCI. But, there were not significant differences in saline group after treatment. 2. Tetracycline-HCI group showed changed surface micro-morphology in SEM after 1.5 minute. There were not significant differences in saline group after treatment. 3. Between Tetracycline-HCI group and saline group, there were difference in surface roughness change and SEM micro-morphology. Tetracycline-HCI have influence on Ti$O_2$ blast implant surface. In conclusion, the detoxification with 50mg/ml Tetracycline-HCI must be applied respectively with different time according to various implant surfaces.