• Title/Summary/Keyword: microstructure effect

Search Result 2,438, Processing Time 0.029 seconds

Electromigration charateristics of eutectic SnPb and SnAgCu thin stripe lines (공정조성의 SnPb 및 SnAgCu 선형 솔더의 electromigration 특성 평가)

  • Yoon Min-Seung;Lee Shin-bok;Joo Young-Chang
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • Electromigration characteristics of $SnAg_3Cu_{0.7}$ and eutectic SnPb solder were studied using thin stripe-type test structures. Significant changes in the microstructure of two solders were observed after electromigration test, in which the temperature and the current density were varied from 90 to $110^{\circ}C$ and from $4.0\times10^4\;A/cm^2\;to\;9.2\times10^4\;A/cm^2$. In SnAgCu solders, hillocks were main]y observed near the anode end. From resistance measurements, it was calculated that the activation energy of the SnAgCu solder for electromigration was 1.04 eV And in eutectic SnPb without the effect of pads, while depleted region was found near cathode end, Sn-rich hillocks were observed near the anode end. During eutectic SnPb electromigration, it were observed that electromigration behavior had two migration modes.

  • PDF

Effect of $M_2O_3$ on the Sinterbility and Electrical Conductivity of $ZrO_2(Y_2O_3)$ System (I): Ceramics of the:$ZrO_2-Y_2O_3-Bi_2O_3$ System ($ZrO_2(Y_2O_3)$ 계 세라믹스의 소결성과 전기전도도에 대한 $M_2O_3$의 영향 (I):$ZrO_2-Y_2O_3-Bi_2O_3$계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 1986
  • Yttria-bismuth-stabilized zirconia was investigated with respect to the amount of $Bi_2O_3$ addition in the ran-ge of 0.5~5mol% to the base composition of $(ZrO_2)_{0.92}(Y_2O_3)_{0.08}.Bismuth was introduced into the ma-terial with $Bi_2O_3-SiO_2$ glasses in order to reduce the evaporation of components. The sinterbility evaporation of components phase formation and microstructure were evaluated depending on the amount of $Bi_2O_3-SiO_2$ glass addition. Two probe A. C conductivity measurement was subjected to all the specimens and the result was discussed on the possible substitution of $Bi^{3+}$ for $Zr^{4+}$ and interistial $Si^{4+}$ in the fluorite structure of zirconia crystal there-upon the possible change in the capability of oxygen transference within the material. It was found that the addition of $Bi_2O_3$ could improve the sinterbility of material very much while not so much.oxygen sensing material suitable for relative low temperature firing.

  • PDF

Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials (시멘트의 수화특성에 대한 유·무기 복합 나노실리카의 영향)

  • Kang, Hyun-Ju;Song, Myong-Shin;Park, Jong-Hun;Song, Su-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.510-515
    • /
    • 2011
  • In this study, as a material used to replace silica fumes for high strength concrete, nano-silica compound with organic functional group for dispersion and with inorganic silica group that can cause a pozzolan reaction is synthesized, These nano silica compound is divided into IC, which is nano size $SiO_2$ with irregularly combined hydroxyl group and carboxyl group, and RC, which is nano size $SiO_2$ with regularly combined hydroxyl group and carboxyl group. The effects of these nano silica compound on the hydration of cement are reviewed. As a result, all of synthesized nano-silica compounds have excellent dispersion on the cement flow, we think that dispersion property is the effect of air entraining by synthesized nano-silica compounds. The result of the microstructure observation showed that the particle size of the synthesized nano-silica is smaller than silica fume and spread evenly among the cement particles. In initial The phenomenon of strength decreasing occurred due to delayed hydration reaction by the synthesized nano-silica with carboxyl(-COOH) and hydroxyl(-OH) functional group.

Fatigue Fracture Behavior in Super-Rapid induction Quenched Spheroidal Graphite Cast Iron (고주파유도로를 이용한 초급속열처리 구상흑연주철의 피로파괴특성)

  • Ji, Jeung-Keun;Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.25-29
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the fatigue behavior of high performance ductile cast iron experienced super rapid induction heat treatment. The effect of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional quenching heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by the improvement of surface structure. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress. The crack propagation path has shown zigzag pattern in the hardened surface layer.

  • PDF

Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature (분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성)

  • Lee, Jeong-Cheol;Myong, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shin, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

Dielectric and Piezoelectric Properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Ceramics as a Function of Sintering Temperature (소결온도 변화에 따른 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 세라믹스의 유전 및 압전 특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • $(Ba_{0.85}Ca_{0.15})(Ti_{0.9}Zr_{0.1})O_3$ + 0.04 wt% $CeO_2$ lead-free ceramics were prepared by conventional oxide-mixed method and the effect of sintering temperature on microstructure, dielectric and piezoelectric properties were investigated. Improved piezoelectric properties have been observed at $1,400^{\circ}C$ sintering temperature which show the optimal electrical properties, $k_p{\sim}0.412$, $d_{33}{\sim}316pC/N$, $Q_m{\sim}144$, ${\varepsilon}_r{\sim}3,345$ and $T_c{\sim}85^{\circ}C$. These results show that the sintering temperature plays an important role in piezoelectric properties.

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF WROUGHT WIRE CLASP (WROUGHT WIRE CLASP의 물리적 성질에 관한 실험적 연구)

  • Lee, Kwang-Hee;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.201-218
    • /
    • 1989
  • The purpose of this study was to evaluate the influence of attachment technique on mechanical properties and microstructures of wrought wires. The wires tested in this study were precious metal wires: PGP (Platinum-Gold -Palladium), Elastic #12, Denture Clasp, Standard, Jelenko No. 2, Degulor-Klammerdraht, DM (Dong Myung) and base metal wire : Ticonium. Each wire was divided into three groups, and each group was heat treated as embedding, cast to, and soldering state. Heat treated sample was evaluated by tensile test, bending test, microhardness test, element analysis and microstructure test. The obtained results were as follows: 1. In tensile test, cast to and soldering procedures have an effect on wrought wire clasp as hardening heat treatment. 2. Maximum bending strength was significantly increased in Elastic #12, Denture Clasp, Standard, and DM in cast to procedure. 3. Ticonium showed the highest Victors hardness number, followed by PGP, and there was no significant difference in other wrought wires. In cast to and soldering procedure, Victors hardness number was significantly increased in precious wrought wires. 4. The precious wrought wire showed typical fibrous structure and this was disappeared in cast to and soldering procedure. But physical properties were not influenced by this phenomenon.

  • PDF

Study on Relationship between a TiO2 Photo-Electrode Fabrication Conditions and Efficiency of a Dye-sensitized Solar Cells (산화티탄 광전극 제작조건과 염료감응 태양전지 효율과의 상관관계 연구)

  • Kim, Junoh;Kim, Jinyeop;Song, Chaeyoon;Kim, Jinsung;Yang, Seungjoon;Sung, Youl Moon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1100-1101
    • /
    • 2015
  • In this work, the effect of addition of acetylacetone on microstructure and quality of nanoporous $TiO_2$ photo-electrodes was studied in dye-sensitized solar cells (DSCs) and structure and electrical properties of fabricated cells were investigated. From the results, the DSCs fabricated with acetyl acetone showed highest photovoltaic performances. This behavior may be attributed to paste agglomeration decrease and interconnection and bonding improvement between $TiO_2$ particles. Furthermore, the most favorable dye absorption time results to be 10h: exceeding this time a decrease in efficiency is observed despite the increasing amount of dye absorption. The $TiO_2$ photo-electrode prepared under the conditions of acetylacetone ratio of 15% and dye absorption time of 10hr showed the better photovoltaic performance ($J_{sc}=12.48mA/cm^2$, $V_{oc}=0.69V$, ff=0.68, ${\eta}=5.86%$).

  • PDF

Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers (탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성)

  • 봉하동;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy (Al-6.2wt%Si합금의 리오캐스트 조직과 특성)

  • Lee, Jung-Il;Park, Ji-Ho;Lee, Ho-In;Kim, Moon-Il
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF