• 제목/요약/키워드: microstructure control

검색결과 500건 처리시간 0.025초

전기도금법에 의해 전착된 BixTey 박막의 전기 및 열전 특성 (Thermoelectric/electrical characterization of electrodeposited BixTey thin films)

  • 유인준;이규환;김양도;임재홍
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.308-308
    • /
    • 2012
  • Electrodeposition of thermoelectric materials, including binary and ternary compounds, have been attracting attentions, because its many advantages including cost-effectiveness, rapid deposition rate, and ease of control their microstructure and crystallinity by adjusting electrodeposition parameters. In this work, $Bi_xTe_y$ films were potentiostatically electrodeposited using Au/Ni(80/20 nm)/Si substrate as the working electrode in solutions consisting of 10mM $TeO_2$ and 1M $HNO_3$ where $Bi(NO_3)_3$ was varied from 2.5 to 10 mM. Prior to electrodeposition potentiostatically, linear sweep voltammograms (LSV) were acquired with a standard three-electrode cell. The $Bi_xTe_y$ films deposited using the electrolyte containing low Bi ions shows p-type conductivity, which might be attributed by the large incorporation of Te phases. Near stoichiometric $Bi_2Te_3$ thin films were obtained from electrolytes containing 5mM $Bi(NO_3)_3$. This film shows the maximum Seebeck coefficient of $-100.3{\pm}12.7{\mu}V/K$. As the increase of Bi ions in electrolytes decreases the Seebeck coefficient and resistivity. The maximum power factor of $336.2{\mu}W/m{\cdot}K^2$ was obtained from the film deposited using the solution of 7.5mM $Bi(NO_3)_3$.

  • PDF

Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model

  • Lee, Mun-Hoe;Kim, Hyeong-Min;Chung, Hee-Chul;Kim, Do-Un;Lee, Jin-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1401-1408
    • /
    • 2021
  • This study examined whether the oral administration of low-molecular-weight collagen peptide (LMCP) containing 3% Gly-Pro-Hyp with >15% tripeptide (Gly-X-Y) content could ameliorate osteoarthritis (OA) progression using a rabbit anterior cruciate ligament transection (ACLT) model of induced OA and chondrocytes isolated from a patient with OA. Oral LMCP administration (100 or 200 mg/kg/day) for 12 weeks ameliorated cartilage damage and reduced the loss of proteoglycan compared to the findings in the ACLT control group, resulting in dose-dependent (p < 0.05) improvements of the OARSI score in hematoxylin & eosin (H&E) and Safranin O staining. In micro-computed tomography analysis, LMCP also significantly (p < 0.05) suppressed the deterioration of the microstructure in tibial subchondral bone during OA progression. The elevation of IL-1β and IL-6 concentrations in synovial fluid following OA induction was dose-dependently (p < 0.05) reduced by LMCP treatment. Furthermore, immunohistochemistry illustrated that LMCP significantly (p < 0.05) upregulated type II collagen and downregulated matrix metalloproteinase-13 in cartilage tissue. Consistent with the in vivo results, LMCP significantly (p < 0.05) increased the mRNA expression of COL2A1 and ACAN in chondrocytes isolated from a patient with OA regardless of the conditions for IL-1β induction. These findings suggest that LMCP has potential as a therapeutic treatment for OA that stimulates cartilage regeneration.

수처리용 나노스케일 다공성 세라믹 멤브레인 제조 (Fabrication of nanoporous ceramic membrane for water treatment)

  • 한혁수;이호준;류정호
    • 한국결정성장학회지
    • /
    • 제29권2호
    • /
    • pp.77-81
    • /
    • 2019
  • 최근 환경오염에 관한 문제가 대두됨에 따라서 친환경 수처리 공법에 관한 다양한 방법들이 논의되고 있다. 현재 시장을 주도하고 있는 고분자 멤브레인은 저가이나, 내화학성 및 내구성 측면에서 많은 문제점을 안고 있다. 이에 따라 친환경적이며 내구성, 내화학성이 뛰어난 세라믹 멤브레인의 기공 구조, 크기 및 표면 처리를 통하여 고효율의 수처리용 세라믹 멤브레인을 제작하였다. $ZrO_2$$TiO_2$의 균일한 코팅막 형성을 통하여 멤브레인의 기공 크기를 조절 하였다. 테입케스팅, 졸겔 공정법을 활용하여 멤브레인 표면에 성공적으로 나노기공을 가지는 세라믹 코팅막을 형성하였다. 세라믹 멤브레인의 미세조직 분석, 코팅막의 기공의 크기 분석을 진행하였으며 이에 대한 수처리 특성 변화를 관측하였다.

규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구 (A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams)

  • 김재양;이지은;성동기
    • 접착 및 계면
    • /
    • 제22권1호
    • /
    • pp.22-28
    • /
    • 2021
  • 여러 방면에서 사용되는 규조토를 이용한 제품은 수분흡수에 최적화되어 있지만 고경도, 가루날림, 거친 표면 느낌 등의 문제점을 지니고 있다. 이를 개선하기 위하여 경도가 낮고 탄성이 우수한 EVA (Ethylene vinyl acetate)를 이용하여 과량의 무기물을 첨가하여 수분 흡수 특성이 우수하면서도 저경도, 고탄성을 지니는 올레핀계 발포체를 제조하였다. 발포체의 수분 흡수 특성을 부여하기 위해 규조토를 첨가하였으며, 수분 흡수/건조 특성은 규조토의 함유량에 따라 약 10~15%의 수분 흡수율과 10~70%의 수분 건조율을 나타내었다. 본 연구를 통해 규조토가 첨가된 수분흡수형 올레핀계 발포체 제조가 가능하였으며, 발포체에 첨가된 규조토는 그 미세구조와 특징으로 인해 수분 흡수와 발산에 큰 영향을 끼친다는 것이 확인되었다.

용탕가압침투 AS52 Mg/Al18B4O33w 복합재료의 크리프 특성 (Creep Properties of Squeeze Infiltrated AS52 Mg/Al18B4O33w Composite)

  • 최계원;박용하;박봉규;박용호;박익민;조경목
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.412-419
    • /
    • 2008
  • Creep behavior of the squeeze infiltrated AS52 Mg matrix composites reinforced with 15 vol% of aluminum borate whiskers($Al_{18}B_4O_{33}w$) fabricated squeeze infiltration method was investigated. Microstructure of the composites was observed as uniformly distributed reinforcement in the matrix without any particular defects of casting pores etc.. Creep test was carried out at the temperature of 150 and $200^{\circ}C$ under the applied stress range of 60~120 MPa. The creep resistance of the composite was significantly improved comparing with the unreinforced AS52 Mg alloy. The creep behavior of composites might be interpreted with the substructure invariant model successfully for the composite. Threshold stress of the composite exist for the creep deformation of the composite. The analysis of the creep behavior of the composite with threshold stress indicated that creep deformation was controlled by the lattice diffusion process of AS52 Mg matrix at given effective stresses and temperatures. Activation energy was also calculated to check lattice diffusion controlled creep behavior of the composite.

CAS glass와 Yb2O3를 이용한 2차상의 형상 제어가 AlN 세라믹의 열전도도 및 기계적 특성에 미치는 영향 (Effect of Morphological Control of Secondary Phase using Yb2O3 and Ca-Al-Si-O-based Glass on Thermal and Mechanical Properties of AlN)

  • 최동규;김시연;여동훈;신효순;정대용
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.498-502
    • /
    • 2020
  • We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700℃ and 1900℃ for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 춘계학술발표회 초록집
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성 (Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment)

  • 한창석;김준성;심우빈
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.242-250
    • /
    • 2023
  • Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.