• Title/Summary/Keyword: microstructure control

Search Result 505, Processing Time 0.021 seconds

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.

A Study on the Microstructure and Fatigue Properties of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 미세조직 및 피로특성에 관한 연구)

  • Yun, Du-Pyo;Park, Yeong-Cheol;Kim, Sun-Guk;Lee, Jun-Hui;Lee, Gyu-Chang
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.993-998
    • /
    • 1998
  • In this study TiNi/A16061 shape memory composite is introduced as one of new material using a shape memory alloy. High tensile strength of composite due to compressive residual stress in matrix by the shape memory effect of TiNi fiber can be produced. This composite can remove the tensile residual stress by the difference of coefficients of thermal expansion between fiber and matrix. one of the significant weak point of metal matrix composite. In this paper, shape memory composites are made by squeeze casting. And then, microstructure and fatigue properties of the composites by shape memory effect above inverse transformation temperature A, of TiNi alloy are discussed. The results of the fatigue crack control properties of TiNi/A16061 shape memory composite by a squeeze casting are summarized as follows the effect of fatigue crack propagation control at 363K increases according to the increase of volume fraction and prestrain in composites.

  • PDF

Study on Topology Optimization for Eigenfrequency of Plates with Composite Materials (복합재료판 구조물의 고유진동수 위상최적화에 관한 연구)

  • Kim, Hwa-Ill;Yun, Hyug-Gee;Han, Kyong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1356-1363
    • /
    • 2009
  • The aim of this research is to construct eigenfrequency optimization codes for plates with Arbitrary Rank Microstructures. From among noise factors, resonance sound is main reason for floor's solid noise. But, Resonance-elusion design codes are not fixed so far. Besides, The prediction of composite material's capability and an resonance elusion by controlling natural frequency of plate depend on designer's experiences. In this paper, First, using computer program with arbitrary rank microstructure, variation on composite material properties is studied, and then natural frequency control is performed by plate topology optimization method. The results of this study are as followed. 1) Programs that calculate material properties along it's microstructure composition and control natural frequency on composite material plate are coded by Homogenization and Topology Optimization method. and it is examined by example problem. 2) Equivalent material properties, calculated by program, are examined for natural frequency. In this paper, Suggested programs are coded using $Matlab^{TM}$, Feapmax and Feap Library with Homogenization and Topology Optimization method. and Adequacy of them is reviewed by performing the maximization or minimization of natural frequency for plates with isotropic or anisotropic materials. Since the programs has been designed for widely use. If the mechanism between composite material and other structural member is identified, extension application may be possible in field of structure maintenance, reinforcement etc. through application of composite material.

Microstructure Control and Upconversion Emission Improvement of Y2O3:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Bae, Chaehwan;Jung, Kyeong Youl
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.450-457
    • /
    • 2021
  • Upconversion (UC) properties of Y2O3:Ho3+/Yb3+ spherical particles synthesized by spray pyrolysis were investigated by changing the dopant concentration and calcination temperature. Citric acid (CA), ethylene glycol (EG) and N, N-dimethylformamide (DMF) were used to control the microstructure of Y2O3:Ho3+/Yb3+ particles. In terms of achieving the highest UC green emission intensity, the optimal concentrations of Ho3+ and Yb3+ were found to be 0.3% and 3.0%, respectively. In addition, the UC intensity of Y2O3:Ho3+/Yb3+ showed a linear relationship with the crystallite size. The use of organic additives allows Y2O3:Ho3+/Yb3+ particles to have a spherical and dense structure, resulting in significantly reducing the surface area while maintaining high crystallinity. As a result, the UC emission intensity of Y2O3:Ho3+/Yb3+ particles having a dense structure showed the UC emission intensity about 3.8 times higher than that of hollow particles prepared without organic additives. From those results, when Y2O3:Ho3+/Yb3+ particles are prepared by the spray pyrolysis process, the use of the CA/EG/DMF mixtures as organic additives has been suggested as an effective way to substantially increase the UC emission intensity.

Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process (가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어)

  • Cho, J.Y.;Park, S.M.;Hussain, J.;Song, M.S.;Kim, T.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Solidification Behaviors of the Rapidly Solidified Metallic Powders and Development of the Powder Making Process.;Part I : Development of the Powder Making Process (급속응고된 금속분말의 응고거동 및 제조법에 관한 연구;Part I : 급속응고 제조법)

  • Kim, Jong-Yoon;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.164-174
    • /
    • 1995
  • New metallic powder making processes, named "Centrifugal Emulsification Process(CEP)" and "Mixer and Settler(MS)" have been developed to synthesize rapid solidified metallic powders. Through CEP and MS processings, the high temperature metals as well as the low temperature alloys are manufactured. Also, the effects of rapid solidification on the undercooling, solidification rate and crystallization behaviors can be evaluated effectively through the processes. The standard deviations of the synthesized typical Pb-Sn eutectic powders are 1.63 and 1.51 for CEP and MS respectively, and the average size of the MS powders was $18{\mu}m$. The possibility of the customized not only size and shape control but microstructure control was also shown. Both of the new methods can be applied to continuous powder making processes.

  • PDF

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

Rheological characteristics of non-spherical graphite suspensions

  • Mustafa, Hiromoto Usui;Ishizuki, Masanari;Shinge, Ibuki;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • Since the microstructure of functional thin films depends on the dispersion characteristics of dense slurry, it is important to control the agglomerative nature of slurries under processing. The present authors have been discussing the model prediction of agglomerative nature and local rate of agglomeration in dense suspensions. The experiments have been peformed under shear flow using the nearly spherical and oblate type graphite particles. In this study, the experiment has been conducted using water and glycerol as dispersion media. Stress control type rheometer was used to measure the slurry rheology. Local agglomeration of graphite particles has been predicted by using Usui's model. The experimental results show that both the shape and slurry processing method affect on the local dispersion condition. The agglomeration formed by oblate type graphite particles seems to be more difficult to break up than that of spherical particles.

Recent Studies of Laser Metal 3D Deposition with Wire Feeding (와이어 송급 레이저 금속 3차원 적층 연구동향)

  • Kam, Dong-Hyuck;Kim, Young-Min;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Recent developments of Laser metal 3D deposition with wire feeding are reviewed which provide an alternative to powder feeding method. The wire feeding direction, angle and position as well as laser power, wire feeding rate, and deposition speed are found to be key parameters to make quality deposition with high throughput. When compared with the powder feed, the wire feed shows higher material efficiency, higher deposition rate, and smoother surface. Large elongated columnar grains which have epitaxial growth across deposit layers are observed in deposit cross sections. The growth direction is parallel to the thermal gradient during the deposit process. Tensile properties are found to be dependent on the direction due to the anisotropic deposit property. A real-time feedback control is demonstrated to be effective to improve the deposition stability.