• Title/Summary/Keyword: microstructure characterization

Search Result 364, Processing Time 0.031 seconds

Syntheses and properties of Ti2AlN MAX-phase films

  • Zhang, Tengfei;Myoung, Hee-bok;Shin, Dong-woo;Kim, Kwang Ho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.149-153
    • /
    • 2012
  • Ti2AlN MAX-phase films were synthesized through the post-annealing process of as-deposited Ti-Al-N films. Near amorphous or quasi-crystalline ternary Ti-Al-N films were deposited on Si and Al2O3 substrates by sputtering a Ti2AlN MAX-phase target at room temperature, 300 ℃ and 450 ℃, respectively. A vacuum annealing of those films at 800 ℃ for 1 hour changed those films to crystalline Ti2AlN MAX-phase. The polycrystalline Ti2AlN MAX-phase films exhibited very excellent oxidation resistance due to its characteristics microstructure (nanolaminates), which has potential applications for high-temperature protective coatings. The microstructure and composition of Ti2AlN MAX-phase films were investigated using with a variety of characterization tools.

Characterization of TLP Bonded of Magnesium AZ31 Alloy using a Nickel Interlayer (Ni 삽입재를 사용한 마그네슘 AZ31 합금의 TLP접합 특성평가)

  • Jin, Yeung Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.113-119
    • /
    • 2013
  • The transient liquid phase (TLP) bonding was used to fabricate autogenous joints in a magnesium alloy AZ31 with the aid of a pure Ni interlayer. A $13{\mu}m$ thick pure Ni foil was used in order to form a Mg-Ni eutectic liquid at the joint interface. The interface of reaction and composition profiles were investigated as a function of bonding time using a pressure of 0.16 MPa and a bonding temperature of $515^{\circ}C$. The quality of the joints produced was examined by metallurgical characterization and the joint microstructure developed across the diffusion bonds was related to changes in mechanical properties as a function of the bonding time.

Current Status of $SiC_{f}/SiC$ Composites Material in Fusion Reactor

  • Yoon, Han-Ki;Lee, Sang-Pill
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.166-171
    • /
    • 2007
  • The characterization of monolithic SiC and SiCf/SiC composite materials fabricated by NITE and RS processes was investigated in conjunction with the detailed analysis of their microstructure and density. The NITE-SiC based materials were fabricated, using a SiC powder with average size of 30 nm. RS- SiCf/SiC composites were fabricated with a complex slurry of C and SiC powder. In the RS process, the average size of starting SiC particle and the blending ratio of C/SiC powder were $0.4\;{\mu}m$ and 0.4, respectively. The reinforcing materials for /SiC composites were BN-SiC coated Hi-Nicalon SiC fiber, unidirectional or plain woven Tyranno SA SiC fiber. The characterization of all materials was examined by the means of SEM, EDS and three point bending test. The density of NITE-SiCf/SiC composite increased with increasing the pressure holding time. RS-SiCf/SiC composites represented a great decrease of flexural strength at the temperature of $1000\;^{\circ}C.$

  • PDF

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

A Brief Overview of Atom Probe Tomography Research

  • Gault, Baptiste
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.117-126
    • /
    • 2016
  • Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.

Monte Carlo Simulation of Densification during Liquid-Phase Sintering

  • Lee, Jae Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.288-294
    • /
    • 2016
  • The densification process during liquid-phase sintering was simulated by Monte Carlo simulation. The Potts model, which had been applied to coarsening during liquid-phase sintering, was modified to include vapor particles. The results of two- and threedimensional simulations showed a temporal decrease in porosity, in other words, densification, and an increase in the average size of pores. The results also showed growth of solid grains and the effect of wetting angle on microstructure.

RHEOLOGICAL PROPERTIES OF MAGNETIC PARTICLE SUSPENSIONS

  • Kwon, T.M.;Choi, H.J.;Jhon, M.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.667-671
    • /
    • 1995
  • The viscometric technique is used to study the effects of microstructure on the viscosity (viscosity vs. concentration or shear rate) of magnetic particle suspensions. In this characterization, measurement of suspension viscosity is used to obtain the dependence of viscous energy dissipation on microstructural state of dispersions. Microstructural shape effects which are related to particle orientation are then indirectly obtained. Empirical formulas from mean field theory and the Mooney equation, which are applicable at high concentration of magnetic particles, are used to relate viscosity to particle concentration. The validity and physical meaning of these equations are discussed.

  • PDF

Microstructure Characterization of TiO2 Photoelectrodes for dyesensitized Solar Cell using Statistical Design of Experiments

  • Lee, Sung-Joon;Cho, Il-Hwan;Kim, Hyun-Wook;Hong, Sang-Jeen;Lee, Hun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.177-181
    • /
    • 2009
  • Employing statistical design of experiments, we have performed studies on the characterization of electrodes using $TiO_2$ and process variables in the fabrication process of nanocrystalline dye sensitized solar cell. Systematic experiment to identify the effects of process variables on cell's efficiency has based on broad-band absorption of light by tailor made organometallic dye molecules dispersed on a high surface of $TiO_2$. Employing statistical design of experiment on $TiO_2$ photoelectrode forming process, structural characterization of electrodes and process variable have been investigated. Through the statistical analysis we have found that the particle size of $TiO_2$ and the amount of PEG/PEO are significantly affecting on the cell efficiency. In addition, a significant amount of interaction exists between the particle size and the amount of PEG/PEO.