• Title/Summary/Keyword: microstructure and pore size control

Search Result 19, Processing Time 0.028 seconds

Microstructure and Pore Size Control of Silica Membrane for Gas Separation at Elevated Temperatures

  • Lee Kew-Ho;Sea Bongkuk;Lee Dong-Wook
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 2005
  • Among ceramic membranes developed to date, amorphous silica membranes are attractive for gas separation at elevated temperatures. Most of the silica membranes can be formed on a porous support by sol-gel or chemical vapor deposition (CVD) process. To improve gas permselectivity of the membrane, well-controlled pores having desired size and chemical affinity between permeates and membrane become important factors in the preparation of membranes. In this article, we review the literature and introduce our technologies on the microstructure to be solved and pore size control of silica membranes using sol-gel and CVD methods.

Effect of Suspension Property on Granule Characteristics and Compaction Behavior of Fine Si3Na4 Powder (분산계 특성이 질화규소 미분의 과립특성 및 충진거동에 미치는 영향)

  • 이해원;오성록
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.462-470
    • /
    • 1995
  • The characteristics of spray-dried granules are important for dry pressing operation since they have great influences on die-filling, compaction ratio, and resulting green microstructure. An attempt was made to control granule morphology and the packing structure of fine Si3N4 particles in granules by adjusting suspension property. Mercury porosimetry was used to characterize the pore structures of both granules and green compacts. Finally, the effects of particle packing structure in granules and green microstructure on sintering behavior were investigated.

  • PDF

Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging (NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어)

  • Kim, Chi Heon;Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.57-61
    • /
    • 2016
  • Thick film sealing glass paste is required for cell packaging of NaS based battery for energy storage system, to join the beta-alumina electrolyte tube and the alpha-alumina battery cell cap components. This paper presents the effect of the particle sizes of seal glass powder and the sealing temperatures on the microstructure of the glass sealants was investigated. It was found that the larger in the particle size of seal glass powder, the smaller the pore volume and the number of pores in a unit area. Also, the number of pores decreased with increasing the sealing temperatures while the pore size was increased. This result enables the control of porosity, pore distribution and number of pores in a microstructure of glass sealing component by proper selection of glass powders particle size and sealing temperature.

A study on the pore size control of nano template by anodic aluminum oxidation (양극산화를 이용한 나노템플레이트 기공 크기 제어에 관한 연구)

  • Lee, Su-Ho;Seo, Mun-Su;Yoo, Hyun-Min;Lee, Jae-Hyeong;Joung, Yeun-Ho;Lim, Dong-Gun;Hwang, Hyeon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1495-1496
    • /
    • 2011
  • Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, AAO nanotemplate was fabricated by second anodization method. In addition, effects of electrolyte and anodization voltate on the microstructure of porous alumina films were investigated. Vertically well aligned pores had the average pore sizes of 15-70 nm and the length of approximately 40 ${\mu}m$.

  • PDF

Characterization and Microstructure of an Extruded Flat-Tubular-Type Alumina Filter (압출공정에 의한 수 처리용 평관형알루미나 필터의 미세구조와 특성평가)

  • Bae, Byung-Seo;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.406-412
    • /
    • 2014
  • In this study, flat-tubular-type alumina filters were manufactured using alumina powder of two sizes ($2.4{\mu}m$ ALM-44 and $0.4{\mu}m$ AP 400) by an extrusion process. The manufactured alumina filter was sintered at $1200-1600^{\circ}C$ for 1 h. As particle size increased, the largest pore size, average pore size and porosity increased; but density and linear shrinkage decreased. The alumina filter fabricated using ALM-44 powder sintered at $1500^{\circ}C$ was confirmed as the best water treatment filter after investigation of the bending strength, water permeability and impurity-removal efficiency of the experimental filters. This flat-tubular-type alumina filter is expected to be useful not only for direct water treatment, but also for use as a support filter during coating processes, to control pore size.

Microstructure Control of HAp Based Artificial Bone Using Multi-extrusion Process

  • Jang, Dong-Woo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Porous hydroxyapatite has been widely used as clinical implanted material. However, it has poor mechanical properties. To increase the strength as well as the biocompatibility of the porous HAp based artificial bone, it was fabricated by multi-extrusion process. Hydroxyapatite and graphite powders were mixed separately with ethylene vinely acetate and steric acid by shear mixing process. Hydroxyapatite composites containing porous microstructure were fabricated by arranging it in the die and subject it to extrusion process. Burn-out and sintering processes were performed to remove the binder and graphite as well as increase the density. The external and internal diameter of cylindrical hollow core were approximately 10.4 mm and 4.2 mm, respectively. The size of pore channel designed to increase bone growth (osteconduction) was around 150 ${\mu}m$ in diameter. X-ray diffraction analysis and SEM observation were performed to identity the crystal structure and the detailed microstructure, respectively.

  • PDF

Influences of heating processes on properties and microstructure of porous CeO2 beads as a surrogate for nuclear fuels fabricated by a microfluidic sol-gel process

  • Song, Tong;Guo, Lin;Chen, Ming;Chang, Zhen-Qi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.257-262
    • /
    • 2019
  • The control of microstructure is critical for the porous fuel particles used for infiltrating actinide nuclides. This study concerns the effect of heating processes on properties and microstructure of the fuel particles. The uniform gel precursor beads were synthesized by a microfluidic sol-gel process and then the porous $CeO_2$ microspheres, as a surrogate for the ceramic nuclear fuel particles, were obtained by heating treatment of the gel precursors. The fabricated $CeO_2$ microspheres have a narrow size distribution and good sphericity due to the feature of microfluidics. The effects of heating processes parameters, such as heating mode and peak temperatures on the properties of microspheres were studied in detail. An optimized heating mode and the peak temperature of $650^{\circ}C$ were selected to produce porous $CeO_2$ microspheres. The optimized heating mode can avoid the appearance of broken or crack microspheres in the heating process, and as-prepared porous microspheres were of suitable pore size distribution and pore volume for loading minor actinide (MA) solution by an infiltration method that is used for fabrication of MA-bearing nuclear fuel beads. After the infiltration process, $1000^{\circ}C$ was selected as the final temperature to improve the compressive strength of microspheres.

Microstructures and Heat-treatment of Sintered Steels Using Iron Powder Coated with 0.45% Phosphorus (0.45%인(P)이 피복된 철분말 소결강의 조직 및 열처리)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 1994
  • Commercial pure iron powder and iron powder of coated 0.45% phosphorus were mixed with graphite powder in dry mixer to control carbon content from 0 wt% to 0.8 wt%. Mixed powder was pressed in the mould under the pressure of 510 MPa. Compacts were sintered at 118$0^{\circ}C$ for 40 min. in cracked ammonia gaseous atmosphere. Some of these sintered specimens were quenched in oil, and tempered in Ar gas. All of these specimens were investigated for microstructure, density and hardness in relation to coated phosphorus and carbon content. The results obtained were as follows: (1) The microstructure of the sintered speciments revealed that the amount of pearlite was increased with increasing C content but decreased by P-addition. (2) The P-addition affected the microstructure of pores in which the pore shape became round and its mean size was decreased by P-addition. (3) After tempering of sintered specimens the structure of pearlite was changed from fine structure to coarse one in P added specimen. (4) Hardness was higher in P added specimens.

  • PDF

Analysis of Laser Control Effects for Direct Metal Deposition Process

  • Choi Joo-Hyun;Chang Yoon-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1680-1690
    • /
    • 2006
  • As a promising and novel manufacturing technology, laser aided direct metal deposition (DMD) process produces near-net-shape functional metal parts directly from 3-D CAD models by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using two sets of optical height sensors is designed for monitoring the melt-pool and real-time control of deposition dimension. With the feedback height control system, the dimensions of part can be controlled within designed tolerance maintaining real time control of each layer thickness. Clad nugget shapes reveal that the feedback control can affect the nugget size and morphology of microstructure. The pore/void level can be controlled by utilizing pulsed-mode laser and proper design of deposition tool-path. With the present configuration of the control system, it is believed that more innovation of the DMD process is possible to the deposition of layers in 3-D slice.

Processing Methods for the Preparation of Porous Ceramics

  • Ahmad, Rizwan;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.389-398
    • /
    • 2014
  • Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.