• 제목/요약/키워드: microstructure, thermoelectric materials

검색결과 48건 처리시간 0.034초

Synthesis and Thermoelectric Properties of Carbon Nanotube-Dispersed Bi2Te3 Matrix Composite Powders by Chemical Routes

  • Kim, Kyung Tae;Son, Injoon;Ha, Gook Hyun
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.345-349
    • /
    • 2013
  • Carbon nanotube-dispersed bismuth telluride matrix (CNT/$Bi_2Te_3$) nanopowders were synthesized by chemical routes followed by a ball-milling process. The microstructures of the synthesized CNT/$Bi_2Te_3$ nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped $Bi_2Te_3$ nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a $Bi_2Te_3$ matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure $Bi_2Te_3$ at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.

Optimization of Spark Plasma Sintering Temperature Conditions for Enhancement of Thermoelectric Performance in Gas-Atomized Bi0.5Sb1.5Te3 Compound

  • Jeong, Kwang-yong;Lee, Chul Hee;Dharmaiah, Peyala;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.108-114
    • /
    • 2017
  • We fabricate fine (<$20{\mu}m$) powders of $Bi_{0.5}Sb_{1.5}Te_3$ alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient ($217{\mu}V/K$) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<$20{\mu}m$) powders.

P-형 Skutterudite 소재의 고온 열전물성 제어를 위한 공정 개발 (Process Development for Enhancement of High Temperature Thermoelectric Properties in a p-Type Skutterudite)

  • 류붕거;노창완;최순목
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.495-499
    • /
    • 2020
  • Power factor improvement at high temperatures has been a major research topic for the development of skutterudite thermoelectric materials. Here, we attempted to optimize the process parameters for manufacturing skutterudite materials, especially for p-type systems. We focused on the effect of aging time variation to maximize the high-temperature performance of the Ce-filled Fe3CoSb12 skutterudite system. The optimized aging time was concluded to be a key parameter for the formation of single-phase nanostructures in this p-type skutterudite system. The optimized condition was effective in reducing the bipolar effect at high temperature ranges by increasing the carrier concentration in the p-type system. To confirm the conclusions, the electrical conductivity, Seebeck coefficient, and power factor were measured. The results matched well with the microstructure and with those of an XRD analysis performed for the system.

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur;Kim, Il-Ho;Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.132-138
    • /
    • 2022
  • Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering

  • Vishwakarma, Avinash;Bathula, Sivaiah;Chauhan, Nagendra S.;Bhardwaj, Ruchi;Gahtori, Bhasker;Srivastava, Avanish K.;Dhar, Ajay
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1540-1545
    • /
    • 2018
  • SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ~ 1.1 at $900^{\circ}C$ in ntype $Si_{80}Ge_{20}$ nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ${\sim}3.4{\times}10^7K/s$, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ~7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ${\sim}2.1Wm^{-1}K^{-1}$, which corresponds to ~50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.

분말야금법으로 제조된 FeSi2 열전특성 화합물의 열처리 시간에 따른 미세조직과 상변화 (Phase Transformation and Microstructure of FeSi2 Thermoelectric Compounds Manufactured by Powder Metallurgy)

  • 박경태;신진교;홍순직;천병선
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.482-488
    • /
    • 2010
  • In this study, $FeSi_2$ as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below $1200^{\circ}C$ for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering ($1200^{\circ}C$, 12 h). In order to precipitate ${\beta}-FeSi_2$, heat treatment was performed at $850^{\circ}C$ with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase ${\beta}-FeSi_2$ was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.

아크용해법으로 제조된 Skutterudite CoSb3의 열전특성 (Thermoelectric Properties of Skutterudite CoSb3 Prepared by Arc Melting)

  • 유신욱;박종범;조경원;장경욱;어순철;이정일;김일호
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.93-96
    • /
    • 2005
  • The arc melting was employed to prepare undoped $CoSb_3$ compounds and their thermoelectric properties were investigated. Specimen annealed at $400^{\circ}C$ for 24 hrs showed sound microstructure. However, considerable voids and cracks were found after annealing at above $500^{\circ}C$. It seems to be attributed to the phase dissociation and thermal expansion due to phase transitions during annealing and cooling. Single phase $\delta-CoSb_3$ was successfully obtained by annealing at $400^{\circ}C$ for 24 hrs. In the case of increasing annealing temperature, phase decompositions occurred. Undoped $CoSb_3$ showed p-type conduction and intrinsic semiconducting behavior at all temperatures examined. Thermoelectric properties were remarkably improved by annealing and they were closely related to phase transitions.

6H-SiC로부터 제작한 SiC 세라믹스의 열전변환 특성 (Thermoelectric Conversion Characteristics of SiC Ceramics Fabricated from 6H-SiC Powder)

  • 배철훈
    • 한국세라믹학회지
    • /
    • 제27권3호
    • /
    • pp.412-422
    • /
    • 1990
  • Porous SiC ceramics were proposed to be promising materials for high-temperature thermoelectric energy conversion. Throughthe thermoelectric property measurements and microstructure observations on the porous alpha SiC and the mixture of $\alpha$-and $\beta$-SiC, it was experimentally clarified that elimination of stacking faults and twin boundaries by grain growth is effective to increase the seebeck coefficient and increasing content of $\alpha$-SiC gives rise to lower electrical conductivity. Furthermore, the effects of additives on the thermoelectric properties of 6H-SiC ceramics were also studied. The electrical conductivity and the seebeck coefficient were measured at 35$0^{\circ}C$ to 105$0^{\circ}C$ in argon atmospehre. The thermoelectric conversion efficiency of $\alpha$-SiC ceramics was lower than that of $\beta$-SiC ceramics. The phase homogeneity would be needed to improve the seebeck coefficient and electrical conductivity decreased with increasing the content of $\alpha$-phase. In the case of B addition, XRD analysis showed that the phase transformation did not occur during sintering. On the other hand, AlN addiiton enhanced the reverse phase transformation from 6H-SiC to 4H-SiC, and this phenomenon had a great effect upon the electrical conductivity.

  • PDF

TEP 측정방법을 이용한 Zr-0.8Sn 합금의 Nb 고용도에 관한 연구 (A Study on the Solubility of Nb in Zr-0.8Sn Alloy by Thermoelectric Power Measurement)

  • 오영민;정흥식;정용환;김선진
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.453-459
    • /
    • 2001
  • 미세조직에 따라 기계적 성질 및 내산화성.내부식성 등의 제반 성질이 크게 변하는 Zr계 핵연료 피복관은 미세조직의 최적화가 중요하다. 이러한 미세조직은 합금원소의 고용도에 크게 의존하지만, Zr은 대부분의 용질합금원소의 고용도가 매우 작아서 측정이 곤란하였다. 본 연구에서는 핵연료 피복관 재료의 주요한 기본조성 재료인 Zr-0.8Sn 합금에 대한 Nb의 고용도를 TEP 측정방법을 이용하여 연구하였으며, 광학현미경과 전자현미경으로 미세조직을 관찰하여 이를 확인하였다. 균질화 처리온도가 증가함에 따라 고용된 Nb 함량이 증가하여 Zr-0.8Sn 합금의 TEP는 감소하는 경향을 보였다. 처리온도가 더욱 증가하면 TEP의 포화가 발생하였는데 이는 TEP에 영향을 미치는 고용된 합금원소의 함량 변화가 없기 때문이다. 따라서, TEP의 포화영역이 나타나기 시작하는 균질화 처리온도가 첨가된 Nb이 Zr-0.8Sn 합금에 모두 고용되는 시점이며, 이를 토대로 온도에 따른 Zr-0.8Sn 합금에서의 Nb 고용도 ($C_{Nb}$ )를 $4.69097{\times}10^{16}{\times}e^{-25300\times\;I/T}$(ppm.at.%)로 나타낼 수 있었다.

  • PDF