• 제목/요약/키워드: microstructural observations

검색결과 89건 처리시간 0.026초

변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구 (The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet)

  • 김동옥;강찬우;이수연
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

저온환경에 노출된 시멘트 경화체의 황산염침식 저항성 및 미세구조적 조사 (Sulfate Attack Resistance and Microstructural Observations of Cement Matrix Exposed to a Low Temperature Condition)

  • 이승태
    • 콘크리트학회논문집
    • /
    • 제21권5호
    • /
    • pp.611-617
    • /
    • 2009
  • 이 연구는 보통포틀랜드시멘트로 제조된 모르타르 및 페이스트 샘플의 황산염침식 저항성을 평가하기 위하여 수행되었다. 주요 실험변수는 사용된 황산염용액의 온도조건으로써, 각각 $4^{\circ}C$, $10^{\circ}C$$20^{\circ}C$로 유지된 5% 황산나트륨 용액에 침지한 모르타르의 침지재령별 팽창, 압축강도 및 휨강도를 측정 한 후, 황산염침식 저항성을 평가하였다. 뿐만 아니라, XRD, DSC 및 SEM/EDS와 같은 기기분석 기법을 이용하여 저온환경에 노출된 페이스트 샘플 중에 생성된 반응생성물 조사 및 미세구조 분석도 아울러 실시하였다. 실험 결과에 의하면, 황산염침식에 의한 모르타르의 성능 저하는 시험용액 온도에 매우 의존적으로 나타났으며, 특히, 저온환경에서는 쏘마싸이트의 생성으로 인한 성능 저하가 매우 극심하게 나타남을 확인할 수 있었다. 따라서, 저온의 황산염환경에 콘크리트구조물이 노출될 경우 세심한 주의가 요구된다.

미세조직적 인자가 밀소둔된 Ti-6Al-4V 합금의 피로 및 피로균열전파 거동에 미치는 영향 (Effect of Microstructural Factors on Fatigue and Fatigue Crack Propagation Behaviors of Mill-Annealed Ti-6Al-4V Alloy)

  • 박상후;김수민;이다은;안수진;김상식
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.845-853
    • /
    • 2018
  • To understand the effect of microstructural factors (i.e., the size of ${\alpha}$ phase, equiaxed vs bimodal structure) on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of mill-annealed Ti-6Al-4V (Ti64) alloy, three specimens of EQ (equiaxed)-8 (8 indicates the size of ${\alpha}$ grain), BM (bimodal)-8, and BM-16 were studied. The uniaxial HCF and FCP tests were conducted at an R ratio of 0.1 under sinusoidal fatigue loading. The microstructural influence (i.e., EQ vs BM) was not significant on the tensile properties of mill-annealed Ti64 alloy, and showed an increase in tensile strength and elongation with decreasing gauge thickness from 50 mm to 1.3 mm. The microstructure, on the other hand, affected the resistance to HCF substantially. It was found that the EQ structure in mill-annealed Ti64 has better resistance to HCF than the BM structure, as a result of different crack initiation mechanism. Unlike HCF behavior, the effect of microstructural features on the FCP behavior of mill-annealed Ti64 was not significant. Among the three specimens, BM-16 specimen showed the highest near-threshold ΔK value, probably because it had the greatest slip reversibility with large ${\alpha}$ grains. The effect of microstructural factors on the HCF and FCP behaviors of mill-annealed Ti64 alloy are discussed based on fractographic and micrographic observations.

IN738LC 합금의 열간 노출 및 재생 열처리에 따른 미세조직과 응력 파단 특성의 변화 (Effect of Thermal Exposure and Rejuvenation Treatment on Microstructure and Stress Rupture Properties of IN738LC)

  • 최백규;주동원;김인수;장중철;조창용
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.915-922
    • /
    • 2001
  • Effects of thermal exposure and rejuvenation treatment on the microstructural evolution and the stress-rupture properties of IN738LC have been investigated. The role of precipitates on the stress-rupture properties has been analyzed through microstructural observations. Thermal exposure at $982^{\circ}C$ for 1000 hours gave rise to precipitation of $\sigma$ phase and coarsening of r'. The microstructural degradation with thermal exposure at $982^{\circ}C$ deteriorated stress rupture properties of the alloy. All the existing phases except MC carbides have completely dissolved into the matrix with homogenization treatment at $1200^{\circ}C$ for 2 hours. Microstructure and stress-rupture properties of the thermal exposed specimens have been successfully rejuvenated by the proposed treatment.

  • PDF

IN738LC 합금의 열간 노출 및 재생 열처리에 따른 미세조직과 응력 파단 특성의 변화 (Effect of Thermal Exposure and Rejuvenation Treatment on Microstructure and Stress Rupture Properties of IN738LC)

  • 최백규;주동원;김인수;장중철;조창용
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.833-840
    • /
    • 2001
  • Effects of thermal exposure and rejuvenation treatment on the microstructural evolution and the stress-rupture properties of IN738LC have been investigated. The role of precipitates on the stress- rupture properties has been analyzed through microstructural observations. Thermal exposure at $982^{\circ}C$ for 1000 hours gave rise to precipitation of $\sigma$ phase and coarsening of ${\gamma}$'. The microstructural degradation with thermal exposure at $982^{\circ}C$ deteriorated stress rupture properties of the alloy. All the existing phases except MC carbides have completely dissolved into the matrix with homogenization treatment at $1200^{\circ}C$ for 2 hours. Microstructure and stress-rupture properties of the thermal exposed specimens have been successfully rejuvenated by the proposed treatment.

  • PDF

동적 재결정에 의한 연화를 고려한 열간성험공정 해석 (Analysis of Hot Forming Process with Flow Softening by Dynamic Recrystallization)

  • 방원규;이종수;장영원
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.137-143
    • /
    • 2001
  • The change of flow stress due to dynamic recrystallization during hot forming process is investigated. A series of mechanical tests has been conducted at various temperatures, and constitutive relations and recrystallization kinetics were formulated from the test results. The effect of dynamic recrystallization to the flow stress was implemented to a commercial FEM code by conditioned remapping of state variables. The datum strain of stress compensation was optimized to minimize the overestimation of forming loads. Suggested datum was formulated as an exclusive function of critical strain for recrystallizalion and validated by mechanical tests and microstructural observations.

  • PDF

Micromagnetic simulations based on directly observed microstructures

  • Lee, Je-Hyun;Kim, Sang-Koog
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.9-10
    • /
    • 2011
  • We have prepared FePtCu L10 bit patterned media, of which magnetic properties and microstructural details are obtained by direct measurement and observations. The patterning process on the continuous film induced a drastic changes in the coercivity, SFD, and angular dependencies. The origin of the changes are explained by micromagnetic simulations with the finite element models including the details of the microstructures.

  • PDF

Al2O3에서 미끄럼시의 마모 및 마모천이 기구 (Wear and Wear Transition Mechanisms During Sliding in Al2O3)

  • 조성재;김종집;한준희;문한규
    • 한국세라믹학회지
    • /
    • 제26권1호
    • /
    • pp.51-58
    • /
    • 1989
  • Wear and wear transition mechanisms during sliding as a function of time in Al2O3 have been studied to understand the wear behaviour of brittle ceramic materials. Commercial Si3N4 ball was rotated against flat Al2O3 specimens which were hot pressed and polished using upto 1${\mu}{\textrm}{m}$ diamond paste. Paraffin oil was used as a lubricant. Experimental data show that wear of Al2O3 is separated into distinct two stages, i.e., initial stage of slow wear and final stage of rapid wear. Microstructural observations at worn surface show that wear occurs through grooving and grain pull-out in the initial and final stage respectively. TEM observations beneath the worn surfaces show that grain pull-out starts to occur by the propagation of grain boundary cracks induced by dislocation pile-up throughthe surface.

  • PDF

IV형 경석고와 경화처리된 IV형 경석고 그리고 폴리우레탄 수지 치형재의 표면경도와 미세구조 특성의 비교 (A comparison of surface hardness and microstructural characteristics between a type IV stone with and without die hardening treatment, and a polyurethane resin die material)

  • 이완선;김지환;김태석;김남식;유진호
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.227-235
    • /
    • 2012
  • Purpose: This study compared the surface hardness (Vickers) and microstructural characteristics between a type IV stone with and without die hardening treatment, a polyurethane die material. Methods: Materials used were a type IV stone(MG Crystal Rock), two die hardeners (Hardening bath, Epox-it), and a polyurethane resin material(Polyluck). Six specimens per group were prepared according to manufacturer's directions. The prepared specimens were tested by means of hardness test, one-way ANOVA analysis, scanning electron microscopic(SEM) observations and energy dispersive spectroscopic(EDS) analysis. Results: In the hardness test and its statistical analysis, there was no significant difference in the surface hardness between a type IV stone and type IV stone with die hardener coating, type IV stone mixed with an epoxy like material instead of water. In contrast, polyurethane resin material exhibited significantly greater surface hardness than other specimen groups (p<0.05). Conclusion: By considering the results of the hardness test, SEM observations and EDS analysis, although the die hardeners on type IV stone did not show remarkable improvement in surface hardness, the die hardener coating on the surface of type IV stone material did show decrease of microporous and improvement of surface defects.

용탕단조법으로 제조된 AZ51-xSn 마그네슘 합금의 미세파괴기구 (Microfracture Mechanism of Squeeze Cast AZ51-xSn Magnesium Alloys)

  • 김병호;도정현;이성학;박익민
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.797-810
    • /
    • 2009
  • A study was made of the effects of a Sn addition on the microstructure and microfracture mechanism of squeeze cast AZ51-xSn magnesium alloys. Microstructural observation, in situ fracture testing, and fractographic observations were conducted on these alloys to clarify the microfracture process. The microstructural analyses indicated that $Mg_2Sn$ particles as well as $Mg_{17}Al_{12}$ particles precipitated mainly along the solidification cell boundaries; the volume fraction of these hard particles increased as the amount of added Sn increased, with increased the strength. From in situ fracture observations of the AZ51-7Sn alloy, coarse precipitates located on the cell boundaries worked as easy crack propagation sites and caused abrupt intercellular fracturing. On the other hand, the overall fracture properties of the AZ51-3Sn alloy improved because crack propagation proceeded into the Mg matrix rather than into the cell boundaries as twins developed actively, as confirmed by an R-curve analysis. These findings suggest that the addition of 3~5 wt.% Sn is effective in improving both the tensile and fracture properties on the basis of well-developed twins, the blocking of crack propagation, and crack blunting.