• Title/Summary/Keyword: microstructural change

Search Result 316, Processing Time 0.023 seconds

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.

Thermal Stability of Mechanically Alloyed Al-(6~3wt.%)Cr-(3~6wt/%)Zr Alloys (기계적 합금화법으로 제조된 Al-(6~3wt.%)Cr-(3~6wt.%)Zr 합금의 열적 안정성)

  • Yang, Sang-Seon;Lee, Gwang-Min
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.403-408
    • /
    • 2000
  • The Al-Cr-Zr composite metal powders were prepared by mechanical alloying and consolidated by vacuum hot pressing. The microstructural characteristics and the thermal stability of the MA Al-Cr-Zr alloys were evaluated by means of microhardness measurement, XRD and TEM in order to develop high temperature, high strength aluminum alloys. The mechanical alloying was conducted in attritor with 300rpm for 20 hours. The density of the vacuum hot pressed Al-Cr-Zr alloy reached at 97% of theoretical one. After exposing at $300^{\circ}C$ for 100 hours, there is almost no variation in hardness change of the MA alloys. Even after exposing at $ 500^{\circ}C$ for 100 hours, the hardness of the alloy was decreased within 6% of the initial value. The fine stable $Al_3Zr\;and\; Al_{13}Cr_2$ intermetallics were formed at the stage of consolidation and heat treatment in aluminum matrix. The good thermal stability of the MA Al-Cr-Zr alloy can ab attributed to the role of the dispersoids, inhibiting grain growth of nanocrystalline, and the final grain size after heat treatment was less than 150nm.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

Microstructural Change by Hot Forging Process of Korean Traditional Forged High Tin Bronze (전통기술로 제작된 방짜유기의 열간 단조 과정별 미세조직 변화)

  • Lee, Jae-sung;Jeon, Ik-hwan;Park, Jang-sik
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.493-502
    • /
    • 2018
  • Currently, the fabrication of a high-tin bronze spoon by traditional manufacturing techniques involves 10 steps in the bronze ware workshop. Hot forging has a major influence on manufacturing and involves two to three steps. The dendritic ${\alpha}$-phase in the microstructure of the high-tin bronze spoon is refined and finely dispersed through hot forging. In addition, twinning is observed in the ${\alpha}$-phase of the hammered part, and the ${\alpha}$-phase microstructure gradually transform from a polygon to a circular shape due to hammering. In this process, the adjacent ${\alpha}$-phases overlap with each other and remain combined after quenching. The microstructure with the overlapping is also observed in bronze artifacts, and this shows the correlation with technical system. The results of the experimental hot forging of Cu-22%Sn alloys show that the decrease in in the amount of the dendritic microstructure, which forms during casting, is in proportion to the number of processing steps and that the refined grain obtained by hammering contributes to the improvement in the strength of the material. From the hammering marks, which are observed on both the bronze artifact excavated from archaeological sites and on the high-tin bronze spoon produced in the traditional workshop, it is presumed that the knowledge regarding the unrecorded manufacturing system of bronze ware in ancient times has been passed down in a traditional way up to the system used currently.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.