• Title/Summary/Keyword: microstructural change

Search Result 316, Processing Time 0.023 seconds

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N코팅 스퍼기어의 마찰 . 마모 특성에 관한 연구)

  • 노룡;류성기
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.272-277
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficient of C-N coating and TiN coating decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed a more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about 500$^{\circ}C$, results in a tempering of base material that causes microstructural change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

Effects of Alloying Element and Heat Treatment on Properties of Cu-Ti Alloys

  • Suk, Han-Gil;Hong, Hyun-Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.246-249
    • /
    • 2009
  • Cu-Ti alloys with titanium in the range of 0.5-6.0 wt% were developed to evaluate the effect of the titanium content and heat treatment on microstructure, hardness, and electrical conductivity. The hardness of the Ti-added copper alloys generally increased with the increase in titanium content and hardening was effective up to the 2.5 wt%-Ti addition. Microstructural examination showed that the second phase of $Cu_4Ti$ started to precipitate out from the 3.0 wt% Ti-addition, and the precipitate size and volume fraction increased with further Ti addition. Aging of the present Cu-Ti alloys at $450^{\circ}C$ for 1 h increased the hardness; however, the further aging up to 10 h did not much change the hardness. In the present study, it was inferred that in optimal Ti addition and aging condition Cu-Ti alloy could have the hardness and electrical conductivity values which are comparable to those of commercial Cu-Be alloy.

Change of Mechanical Properties During Heat Treatment of Diecast ADC12 Alloy (다이캐스팅 ADC12 합금의 열처리 전후의 기계적 특성변화)

  • Kang, Shin-Wook;Park, Kyeong-Seob;Oh, Eun-Ho;Shim, Jung-Il;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • We investigated the effect of heat treatment on an ADC12 alloy produced using diecasting. The heat treatment used in this study was a typical T6 process: a solid solution treatment followed by an artificial aging treatment. As-cast specimens were solid-solution-treated at $500^{\circ}C$ and $530^{\circ}C$ for 1-16 hr, and aged at $160^{\circ}C$ and $180^{\circ}C$ for 1-8 hr. Microstructural changes in the alloy during the heat treatment were observed. Changes in mechanical properties of the alloy were measured using a micro-Vickers hardness tester. Finally, we determined the optimal heat treatment conditions for the diecast ADC12 alloy.

A Morphological Study on the Titanium-Oxide Foams Processed Using Freeze-Casting (동결 주조법으로 제조된 티타늄 옥사이드 폼의 구조 연구)

  • Yoon, Hyunjung;Choe, Heeman;Choi, Hyelim
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.427-431
    • /
    • 2012
  • The $TiO_2$ foam synthesized using freeze-casting is a promising photocatalyst and photovoltaic electrode for a variety of energy applications, because the freeze-casting technique is easy to use, cheap, and suitable for mass-production. Despite its several advantages, little scientific information is available on the processing and morphology of the $TiO_2$ foams processed by freeze-casting. In particular, no systematic study has been performed on the microstructural evolution and morphological change of the rutile-phase $TiO_2$ foams during sintering. Therefore, in the present study, several $TiO_2$ foam samples were produced using the freeze-casting technique, which were then sintered at a relatively high temperature of $1200^{\circ}C$ for 1, 2, and 4 h to compare the morphological changes in the microstructure and to understand the effects of processing parameters of the rutile-phase $TiO_2$ foams. The foam ligament size increased near linearly with increasing sintering time whereas the average pore size decreased only slightly with increasing sintering time, with changes in particle morphology from sphere to rod and complete phase transformation from anatase to rutile.

Fabrication of Hydroxyapatite-coated Zirconia by Room Temperature Spray Process and Microstructural Change by Heat-treatment (상온 분사법에 의한 수산화아파타이트 코팅 지르코니아의 제조 및 미세구조에 미치는 열처리 효과)

  • Lee, Jong Kook;Eum, Sangcheol;Kim, Jaehong;Jang, Woo Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Hydroxyapatite coatings were fabricated by a room temperature spray method on zirconia substrates and the influence of heat-treatment on their microstructure was also investigated. Phase composition of coated hydroxyapatite films was similar to the starting powder, but the grain size of hydroxyapatite particles was reduced to the size of nano-scale about 100 nm. Grain size, particle compactness, and adhesiveness to zirconia of hydroxyapatite coatings were increased with heat-treatment temperature, but some of cracks by heat-treatment above $1100^{\circ}C$ were initiated between hydroxyapatite coatings and zirconia substrate. Heat-treated hydroxyapatite layers show the dissolution in SBF solution for 5 days. Hydroxyapatite-coated specimen heat-treated at $1100^{\circ}C$ for 1 h has a good biocompatibility, which specimen induced the nanocrystalline hydroxyapatite precipitates on the coating surface by the immersion in SBF solution for 5 days.

Analysis of microstructural evolutions during advanced ceramics processing: II. Vibratory deposition of monodisperse particulate system (세라믹 제조시 미세구조 변화의 해석:II. 단분산 입자계의 진동성형)

  • Kim, Ho-Yeon;Kim, Hern
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.605-611
    • /
    • 1998
  • A computer experimental model for analyzing the microstructures and properties of vibratory deposited power compacts was developed. The effects of some significant variables such as amplitude, frequency, cycle, etc. on the change of diffraction patterns and packing densities of the deposited powder compacts were examined. In addition, the condition of phase transition from non-crystalline phase to crystalline one was determined. Data obtained from the present method quite well fitted the empirical correlations for real experimental data. In conclusion, the present model is so useful to investigate the densification and ordering of vibratory compaction.

  • PDF

Low Temperature Consolidation of Silica Film by Flame Hydrolysis Deposition (FHD 공정으로 제조한 실리카 막의 저온 고밀화)

  • Kim, Tae-Hong;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.278-285
    • /
    • 2002
  • For planar optical devices, silica film deposited by FHD was fabricated at low temperature. To prepare silica film at low temperature, we have changed B, P amounts and investigated consolidation effect with varying consolidation temperature and atmosphere on microstructural change, and also observed optical property. The optimum consolidation temperature in He was lower than that of other atmosphere, its temperature could be lowered to 1050$^{\circ}C$. As a result, the roughness of flat silica film prepared at 1050$^{\circ}C$ showed 5, 6nm.

A Study on the Surface Modification of Graphite by CVD SiC -Growth Characteristics of SiC in a Horizontal CVD Reactor- (화학증착 탄화규소에 의한 흑연의 표면개질 연구 -수평형 화학증착반응관에서 탄화규소 성장특성-)

  • 김동주;최두진;김영욱;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.419-428
    • /
    • 1995
  • Polycrystalline silicon carbide (SiC) thick films were depostied by low pressure chemical vapor deposition (LPCVD) using CH3SiCl3 (MTS) and H2 gaseous mixture onto isotropic graphite substrate. Effects of deposition variables on the SiC film were investigated. Deposition rate had been found to be surface-reaction controlled below reactor temperature of 120$0^{\circ}C$ and mass-transport controlled over 125$0^{\circ}C$. Apparent activation energy value decreased below 120$0^{\circ}C$ and deposition rate decreased above 125$0^{\circ}C$ by depletion effect of the reactant gas in the direction of flow in a horizontal hot wall reactor. Microstructure of the as-deposited SiC films was strongly influenced by deposition temperature and position. Microstructural change occurred greater in the mass transport controlled region than surface reaction controlled region. The as-deposited SiC layers in this experiment showed stoichiometric composition and there were no polytype except for $\beta$-SiC. The preferred orientation plane of the polycrystalline SiC layers was (220) plane at a high reactant gas concentration in the mass transfer controlled region. As depletion effect of reactant concentration was increased, SiC films preferentially grow as (111) plane.

  • PDF

Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure (비균일 조직에 따른 불균일 변형 해석을 위한 미시역학적 초소성 모텔)

  • Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1933-1943
    • /
    • 2001
  • A micromechanical model is presented for superplasticity in which heterogeneous microstructures are coupled with deformation behavior. The effects of initial distributions of grain size, and their evolutions on the mechanical properties can be predicted by the model. Alternative stress rate models such as Jaumann rate and rotation incremental rate have been employed to analyze uniaxial loading and simple shear problems and the appropriate modeling was studied on the basis of hypoelasticity and elasto-viscoplasticity. The model has been implemented into finite element software so that full process simulation can be carried out. Tests have been conducted on Ti-6Al-4V alloy and the microstructural features such as grain size, distributions of grain size, and volume fraction of each phase were examined for the materials that were tested at different strain rates. The experimentally observed stress-strain behavior on a range of initial grain size distributions has been shown to be correctly predicted. In addition, the effect of volume fraction of the phases and concurrent grain growth were analyzed. The dependence of failure strain on strain rate has been explained in terms of the change in mechanism of grain growth that occurs with changing strain rate.

Effect of Changes in Metal Characteristics of Hot-Forged Alloy Steel on Mechanical Properties of an Automotive Automatic Transmission Gear (자동차 자동변속기 기어용 합금강의 열간 단조 성형에 따른 기계적 특성 변화에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo;Kim, Hyun-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.135-146
    • /
    • 2016
  • This study investigated the effect of the changes in metal characteristics due to the hot forging on SCR420HB applied to ensure the optimal production of the hot-forging ratio on the mechanical properties of an automotive automatic transmission gear. The microstructural changes in the forging ratio were investigated by adjusting the forging range into multiple ranges from alloy steel. This was done in order to set the optimum forging range given the manufacturing process conditions during the hot forging of alloy steel parts with a carbon content of more than 0.8% wt. The effects of the content change in the microstructure on the mechanical properties due to the use of the part were examined.