• Title/Summary/Keyword: microstructural

Search Result 2,163, Processing Time 0.033 seconds

Effect of Microstructural Factors on the Strength and Deformability of Ferrite-Pearlite Steels with Different Mn and V Contents (Mn 및 V 함량이 다른 페라이트-펄라이트 조직강의 강도와 변형능에 미치는 미세조직 인자의 영향)

  • Hong, Tae-Woon;Lee, Sang-In;Shim, Jae-Hyeok;Lee, Junho;Lee, Myoung-Gyu;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.570-577
    • /
    • 2018
  • This study examines the effect of microstructural factors on the strength and deformability of ferrite-pearlite steels. Six kinds of ferrite-pearlite steel specimens are fabricated with the addition of different amounst of Mn and V and with varying the isothermal transformation temperature. The Mn steel specimen with a highest Mn content has the highest pearlite volume fraction because Mn addition inhibits the formation of ferrite. The V steel specimen with a highest V content has the finest ferrite grain size and lowest pearlite volume fraction because a large amount of ferrite forms in fine austenite grain boundaries that are generated by the pinning effect of many VC precipitates. On the other hand, the room-temperature tensile test results show that the V steel specimen has a longer yield point elongation than other specimens due to the highest ferrite volume fraction. The V specimen has the highest yield strength because of a larger amount of VC precipitates and grain refinement strengthening, while the Mn specimen has the highest tensile strength because the highest pearlite volume fraction largely enhances work hardening. Furthermore, the tensile strength increases with a higher transformation temperature because increasing the precipitate fraction with a higher transformation temperature improves work hardening. The results reveal that an increasing transformation temperature decreases the yield ratio. Meanwhile, the yield ratio decreases with an increasing ferrite grain size because ferrite grain size refinement largely increases the yield strength. However, the uniform elongation shows no significant changes of the microstructural factors.

Synthesis of Copolymeric PHA by Hydrogenophaga pseudoflava and Ralstonia eutropha H16 from Vari-ous Lactones and Their Microstructural Studies (락톤류로부터 Hydrogenophaga pseudoflava와 Ralstonia eutropha H16 두 세균에 의한 공중합 PHA의 합성 및 미세구조적 특성 연구)

  • Jang, Young-Ok;Nam, Won;Choi, Mun-Hwan;Song, Jae-Jun;Yoon, Sung-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2000
  • Two typess of copolyesters, poly(3-hydroxybutyric acid-co-4-hydroxy-butyric acid)[P(3HB-co-4HB] and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)[P(3HB-co-3HV)], with various monomer ratios and different degree of microstructural heterogeneity were synthesized from Ralstonia eutropha H16 and Hydrogenophaga pseudoflava by using ${\gamma}$-butyrolactone and ${\gamma}$-valerolactone, respectively. The two bacteria showed a large difference in the utilization of ${\gamma}$-butyrolactone for cell growth and PHA synthesis. H. pseudoflava synthesized P(3HB-co-4HB) copolyesters with a wide range of 4HB content from 13 to 96 mol% depending on culture conditions, whiel R. eutropha H16 was able to synthesize the copolyesters containing less than 20 mol% of 4HB. An increase in the 4HB content in the P(3HB-co-4HB) copolyesters synthesized by H. pseud-oflava induced an lowering of their melting temperatures as well as their enthalpies of fusion. The increase in the 4HB content, however, increased the rate of degradation by an extracellular P(3HB) depolymerase. NMR spectros-copy and differential scanning calorimetry showed that the P(3HB-co-4HB) copolyesters from H. pseudoflava were generally microstructurally heterogeneous. The P(3HB-co-4HB) copolyesters) synthesized by R. eutropha H16 were rather random copolymers showing less microstructural heterogeneity than those synthesized by H. pseudoflava. The NMR D value analysis suggested that the monomer distribution of the P(3HB-co-3HV) copolymers from the two bacteria were relatively random.

  • PDF

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Analysis of Microstructural Evolution During Directional Solidification of Ni-Base Superalloy CM247LC (니켈계 초내열합금 CM247LC의 일방향응고 시 미세조직 형성거동 분석)

  • Seo, Seong-Moon;Jeong, Hi-Won;Yun, Dae Won;Ahn, Young-Keun;Lee, Je-Hyun;Yoo, Young-Soo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.193-203
    • /
    • 2013
  • The Ni-base superalloy CM247LC was directionally solidified (DS) using the Bridgman-type furnace to understand the effect of the chill plate on the microstructural evolution, such as dendrite arm spacing, microporosity, and MC-type carbide. The DS process was also modeled by the PROCAST to predict the solidification rate, thermal gradient, and resultant cooling rate in the entire length of the DS specimen. Due to the quenching effects of chill plate, four distinct areas were found to form in the specimen, in which the solidification rate was changed, during DS at a given withdrawal rate of 0.083 mm/s. Among the microstructural features investigated, the dendrite arm spacings and average size of the MC-type carbide near the chill plate were found to be influenced by the quenching effect of the chill plate. However, no significant influence was found on the size and volume fraction of microporosity, and the volume fraction of the MC-type carbide. The relationship between the microstructural features and the solidification variables was also analyzed and discussed on the basis of a combination of experimental and modeling results.

Microstructural Characteristics of Electro-Plated Cu Films by DC and Pulse Systems (DC, pulse 조건에 따른 구리 도금층 미세 조직 관찰)

  • Yoon, Jisook;Park, Chansu;Hong, Soonhyun;Lee, Hyunju;Lee, Seungjun;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • The aim of this work was to investigate the effects of electrodeposition conditions on the microstructural characteristics of copper thin films. The microstructure of electroplated Cu films was found to be highly dependent on electrodeposition conditions such as system current and current density, as well as the bath solution itself. The current density significantly changed the preferred orientation of electroplated Cu films in a DC system, while the solution itself had very significant effects on microstructural characteristics in a pulse-reverse pulse current system. In the DC system, polarization at high current above 30 mA, changed the preferred orientation of Cu films from (220) to (111). However, Cu films showed (220) preferred orientation for all ranges of current density in the pulse-reverse pulse current system. The grain size decreased with increasing current density in the DC system while it remained relatively constant in the pulse-reverse pulse current system. The sheet resistance increased with increasing current density in the DC system due to the decreased grain size.

The Effect of Thermal Exposure on the Microstructural Evolution and Tensile Properties in Cast Hastelloy X (Hastelloy X 주조재의 열간 노출에 따른 미세조직 및 인장 특성 변화)

  • Choi, Baig Gyu;Kim, In Soo;Do, Jeonghyeon;Jung, Joong Eun;Jung, In Yong;Hong, Hyun Uk;Jo, Chang Yong
    • Journal of Korea Foundry Society
    • /
    • v.37 no.5
    • /
    • pp.139-147
    • /
    • 2017
  • Microstructural evolution of cast Hastelloy X during thermal exposure has been investigated. OM, SEM, and TEM microscopy were carried out on the as-cast, the standard heat treated, and the thermally exposed conditions. Tensile tests were also conducted to understand the effect of microstructural evolution on the degradation of tensile properties. Coarse $M_6C$ and fine $M_{23}C_6$ carbides were found in as-cast Hastelloy X with fine carbides on sub-boundary. Some of $M_{23}C_6$ carbide dissolved into the matrix during solution heat treatment and dislocation network formed at the interface between the carbide and the matrix due to the misfit strain. There was no significant microstructural difference between the exposed specimens at $400^{\circ}C$ and the solution heat treated specimen. A large amount of $M_{23}C_6$ carbides precipitated along and near grain boundaries and sub-boundaries after exposure at $650^{\circ}C$. Exposure at $870^{\circ}C$ of the alloy caused precipitation of $M_6C$ and ${\mu}$. The strength increased and the elongation decreased by thermal exposure at $650^{\circ}C$ and $870^{\circ}C$ because carbides interfere with the movement of the dislocation. It was found that the precipitation of carbide gave significant effects on the tensile properties of Hastelloy X.

Evaluation of Aging Degradation in 2.25Cr-1Mo Steel by Coercivity and Remanence Measurements - Microstructural Approach (보자력 및 잔류자화를 이용한 2.25Cr-1Mo강의 경년열화도 평가 - 미세조직적 접근)

  • Byeon, Jai-Won;Kwun, Sook-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Microstructural analysis (mean equivalent size, number of carbides per unit area) and measurement of mechanical properties(UTS, Vickers hardness) and magnetic properties(coercivity, remanence) were performed. By comparing these results, the relationship between magnetic properties and microstructural changes with artificial aging was clarified. The carbides were classified as rod, globular and acicular type in terms of morphology. The fine acicular carbides were found to diminish drastically in the initial stage of aging. The magnetic coercivity and remanence were observed to decrease rapidly in the initial about 920 hours of aging time and then decrease slowly afterwards. Linear correlations between the mechanical properties and magnetic properties such as correlations remanence were found.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study

  • Huihui Wang;Hongwei Wen;Jing Li;Qian Chen;Shanshan Li;Yanling Wang;Zhenchang Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1142-1151
    • /
    • 2021
  • Objective: To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods: This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results: Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = -0.448 to -0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion: HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.

Review of Micro/Nano Nondestructive Evaluation Technique (I): Surface and Subsurface Investigation (마이크로/나노 비파괴평가 기술(I): 표면 및 표면직하 검사)

  • Kim, Chung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.198-209
    • /
    • 2012
  • The present paper reviews the widely used surface microstructural investigation technique and micro/nano nondestructive evaluation(NDE) technique which is able to evaluate the surface and subsurface. In general, the micro/nano defects and microstructural state of surface have great influence on the mechanical, physical, and chemical properties of bulk materials. The investigation technique of surface microstructure is possible to evaluate the defects and microstructural state with high reliability. The various applications and developments of each inspection technique have been introduced. Consequently, it is thought that the technique developments and applications of micro/nano NDE in nondestructive industries are extensively possible hereafter.