• Title/Summary/Keyword: microstrip patch

Search Result 623, Processing Time 0.103 seconds

Wide Band Characteristics of the Microstrip circular and square Slot Patch Antenna (마이크로스트립 원형 및 사각형 급전 슬롯 패치 안테나의 광대역 특성)

  • 이용창;백경훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.223-227
    • /
    • 2001
  • To complement the narrow band characteristics of the microstrip patch antenna, the slot patch antenna was designed for the wide band characteristics. The microstrip slot patch antenna has wide band characteristics when the size of the slots and the feed line shapes are designed accordingly. In this study, various substrates as a epsilon-10, and a epoxy were used to design slot patch antennas. The feed line structure of the circular and square were also designed to have wide band. In the case of slot antennas with the circular patch shapes using epsilon-10 plate 50mm thickness with relative permittivity the 41% bandwidth on the 1.5∼2.28㎓ was shown. When an Epoxy plate 1.Sum thickness with relative permittivity 4.75 is used to construct a circular slot antenna with a square patch form, the frequency band width was obtained 77% as the 1.2∼2.7㎓ frequency range. These results are coincided well with the theoretical results.

  • PDF

Pattern-Switchable Microstrip Patch Antenna with Loop Structure (패턴 변환 루프 구조를 가지는 마이크로스트립 패치 안테나)

  • Kim, Yongjin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5447-5451
    • /
    • 2012
  • This paper presents a pattern-switchable microstrip patch antenna with loop structure. The loop structure for switchable radiation beam pattern is connected with feeding line of the microstrip patch antenna. As changing switch on/off state, the radiation beam pattern can be changed. The target frequency is 2.4 GHz and maximum radiation gain is 3.2dBi. The proposed antenna is useful for diversity antenna and smart antenna in modern wireless communication including MIMO (Multi-Input Multi-Output) and WLAN system. The sizes of the rectangular patch and the ground plane are $28mm{\times}28mm$ and $40mm{\times}50mm$, respectively. The simulation and experimental results show that the antenna radiation pattern can be changed with switch on/off configuration.

Mecrostrip Array Antenna Directly Coupled to E-Plane (E-면으로 직접 결합된 마이크로스트립 어레이 안테나)

  • Kim, Tae-Hyung;Hong, Jae-Pyo;Pak, Chin-Taek;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.1
    • /
    • pp.23-29
    • /
    • 1991
  • In order to improve the radiation characteristics of the microstrip antenna, microstrip array antenna consisting of one center patch fed by a coaxial probe and several patches directly coupled to the E-plane by microstrip line is analyzed. The equivalent circuit of the array antenna is represented by the conventional transmission line and the various parameters, such as the mdicrostrip line length, the patch length and the feed point location are calculated to improve the radiation pattern for 5-patch array antenna which has the equal patch width. The 5-patch array antenna with the radiation pattern which has low sidelobe level and narrow beam width is fabricated and then the measured results are compared with the computed values and the results of the single patch microstrip antenna too.

  • PDF

Analysis of Millimeter Wave Microstrip Patch Antennal Using FDTD Method (시간영역 유한차분법을 이용한 밀리미터파대 마이크로스트립 패치 안테나 해석)

  • 배진석;고성선;송기홍;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.668-677
    • /
    • 1998
  • This paper is to verify the availability of the finite difference time domain (FDTD) method for the analysis of millimeter wave microstrip patch antenna. Using this method, the size of the microstrip patch antenna resonating at 32.153 GHz is optimized and the input impedance, the voltage standing wave ratio and the radiation pattern are calculated. The resonance frequencies of the microstrip patch antenna are calculated by MOM and FDTD method and then compared with the measured results, showing the difference of 12.27% and 1.27% respectively. Also, the bandwidth of this Ka-band patch antenna is about 8% which is similar to the case of X-band.

  • PDF

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications

  • Kim, Ji-Hyuk;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.204-209
    • /
    • 2005
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates are used to realize small size and broadband characteristics. The microstrip patch is divided into 3 pieces and each patch is connected to each other using a metal microstrip line. The fabrication process is simple and only one mask is needed. Two types of microtrip antennas are fabricated. Type A is the micros trip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8^{*}12^{*}2mm^{3}$ and the experimental results show that the antenna type A and type B have the bandwidth of 420 MHz at 5.3 GHz and 480 MHz at 5.66 GHz, respectively.

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim, Ji-Hyuk;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.603-604
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer of high and low dielectric substrates are used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication process is very simple and only one mask is needed. Two types of microtrip antennas are fabricated. Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8*12*2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively.

  • PDF

Estimation of Microstrip Patch Antenna corresponding to Feed Positions (마이크로스트립 패치 안테나의 급전 위치에 따른 평가)

  • Kim, Tae Yong;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.473-474
    • /
    • 2015
  • General microstrip patch antenna has small bandwidth. Input impedance of patch antenna corresponding to feed positions and its feed model is strongly varied. In this paper, wideband microstrip patch antenna operating in 2.4GHz ISM band is investigated. Using the MoM, the variation with feed position of the input impedance of a patch antenna is estimated.

  • PDF

Design of a Miniature Wideband H-shaped Microstrip Antenna for WLAN (WLAN용 소형 광대역 H-모양 마이크로스트립 안테나)

  • 이문수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.173-173
    • /
    • 2004
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed. To increase the bandwidth of microstrip patch antenna a configuration of stacked type using parastic element is used. Furthermore, to reduce the size of microstrip patch antenna, two techniques are employed . the first one is H-shaped patch type and the second one is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results. Experiment results show that the bandwidth of antenna in 740㎒ centered at 5.46㎓(13.5%), which is close agreement with the calculations, 770㎒(13%). Also, the antenna size can be reduced by 71.5% compared with the half wavelength rectangular microstrip antenna using the same substrate at the same frequency.

A Study on the Cylindrical Microstrip Antenna for ISM Band Applications (ISM 대역용 원통형 마이크로스트립 안테나에 관한 연구)

  • Jeong, Don-Ki;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.326-332
    • /
    • 2006
  • In this study, the antenna was proposed for the omni-directional characteristic in horizontal plane. Therefore we proposed $1{\times}4$ microstrip patch array on cylindrical surface for studying microstrip patch antennas. This antenna is designed for 2.45GHz ISM band and applications. This antenna can be applied to the base station of wireless microphone and access point of wireless LAN. The length and width of the patch antenna and the width of the feed line were calculated by using the theory of microstrip patch antenna, by using the both the 2.5D and 3D EM simulators the optimized antenna characteristics are obtained. From result of measured, antenna's impedance of coaxial waveguide port was 51.915-j3.688 ${\Omega}$, the return loss was -31dB and VSWR was 1.081.

  • PDF

Design of "ㄷ"-Shaped Folded Microstrip Patch Antenna ("ㄷ" 자형 폴디드 마이크로스트립 패치 안테나 설계)

  • Heo, Hee-Moo;Seo, Jeong-Sik;Heo, Jin-Young;Woo, Jong-Myung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.464-467
    • /
    • 2003
  • In this paper, to reduce the patch size of microstrip antenna, folded surface-type patch antenna is designed and fabricated. Size reduction could be achieved because of the downed resonant frequency by the extended current path passing along below the transformated patch surface. Comparison of the patch size at the 1.575 GHz between plane type(length 82 mm${\times}$width 90 mm) and "ㄷ"-shaped folded type is carried and comparision of frequency variation at the same patch size is carried. The result is like that the patch size was reduced than the plane type by 60 mm(73.17 %) at the same frequency. Therefore, it could be checked that "ㄷ"-shaped folded type antenna is advantageous than the plane type in size reduction.

  • PDF