• Title/Summary/Keyword: microsomal ${\omega}$-3 desaturase

Search Result 6, Processing Time 0.02 seconds

Molecular Cloning and Characterization of Expression Patterns of a Plastid ω-3 Fatty Acid Desaturase cDNA from Perilla frutescens

  • Lee, Seong-Kon;Kim, Kyung-Hwan;Kwon, Moo-Sik;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.6-11
    • /
    • 2001
  • An ${\omega}-3$ fatty acid desaturase gene which is involved in de novo synthesis of -Iinolenate was isolated from cDNA library of Perilla frutescens. A cDNA library was constructed with mRNA extracted from perilla seeds of 12 DAF. The cDNA clone consisting of 1317-bp open reading frame encoding 438 amino acids with a relative MW of 50kDa, was isolated and showed 65-83% similarities to other known genes. This cDNA is deduced to encode a plastidal ${\omega}-3$ fatty acid desaturase based on the fact that it has higher homology to plastidal ones than to microsomal ones and its N-terminal sequence shares several characteristics of transit peptides of chloroplast proteins. Southern blot analysis of genomic DNA indicated that more than one gene or alleles for ${\omega}-3$ fatty acid desaturase are present in the genome of perilla. Northern blot analysis showed that the ${\omega}-3$ fatty acid desaturase gene is mainly revealed in early developing seeds and has different expression patterns depending on tissue types compared to the microsomal ones.

  • PDF

Structure and Expression of a Perilla (Perilla frutescens Britt) Gene, PfFAD3, Encoding the Microsomal ${\omega}-3$ Fatty Acid Desaturase

  • Lee, Hyang-Hwa;Pyee, Jae-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.424-427
    • /
    • 2004
  • Microsomal ${\omega}-3$ fatty acid desaturase (FAD3) is an essential enzyme in the production of the n-3 polyunsaturated fatty acid ${\alpha}-linolenic$ acid during the seed developing stage. To understand the regulatory mechanism of the gene encoding the ${\omega}-3$ fatty acid desaturase, a genomic fragment corresponding to the previously isolated perilla seed PfFAD3 cDNA was amplified from perilla (Perilla frutescens Britt) by GenomeWalker PCR. Sequence analysis of the fragment provided with identification of a 1485-bp 5'-upstream region and a 241-bp intron in the open reading frame. To determine the tissue-specificity of the PfFAD3 gene expression, the 5'-upstream region was fused to the ${\beta}-glucuronidase$ (GUS) gene and incorporated into Arabidopsis thaliana. Histochemical assay of the transgenic plants showed that GUS expression was restricted to seed and pollen, showing that PfFAD3 gene was exclusively expressed in those tissues.

Increase in Linolenate Contents by Expression of the fad3 Gene in Transgenic Tobacco Plants

  • Kang, Young-Hwi;Min, Bok-Kee;Park, Hee-Sung;Lim, Kyung-Jun;Huh, Tae-Lin;Lee, Se-Yong
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.308-313
    • /
    • 1996
  • An 1.4 kb of the fad3 cDNA encoding microsomal linoleic acid desaturase catalyzing the conversion of linoleic acid (18:2, ${\omega}-6$) to linolenic acid (18:2, ${\omega}-3$) was introduced into tobacco plants by the Agrobacterium-mediated plant transformation, Among the transgenic tobacco plants conferring kanamycin resistance, five transformants showing increment in unsaturated fatty acid contents were selected and further analyzed for the transgenecity, In genomic Southern blot analyses, copy numbers of the integrated fad3 DNA in chromosomal DNA of the five transgenic tobacco plants were varied among the transgenic lines. By Northern blot analyses, the abundancy of the fad3 mRNA transcript directed by Cauliflower Mosaic Virus 35S promoter was consistent with the relative copy number of the fad3 DNA integrated in the chromosome of transgenic tobacco plants. When compared with the wild type, accumulation of linolenic acid in transgenic tobacco roots was elevated 3.7- to 4.7-fold showing a corresponding decrease in the linoleic acid contents; however, slight increments for linolenic acid were noticed in transgenic leaf tissues. These results indicated that the elevated level of fad3 expression is achieved in transgenic tobacco plants.

  • PDF

Characterization of a fad3 cDNA Encoding Microsomal Fatty Acid Desaturase from Arabidopsis thaliana (Arabidopsis thaliana로부터 지방산 불포화효소 유전자의 분석)

  • 박희성;임경준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.93-97
    • /
    • 1997
  • For the molecular genetic study of cold tolerance mechanism in plants, a cDNA encoding fatty acid desaturase (fad3), converting linoleic acid (18:2, $\omega$-6) to linolenic acid (18:3, $\omega$-3), was isolated from $\lambda$ZAPII Arabidopsis thaliana cDNA expression library by plaque hybridization using fad3 cDNA probe derived from Brassica napus. A 1.8 kb-EcoRI fragment from a lambda clone showing a strong positive hybridization signal was subcloned into pGEM7 and analyzed for its nucleotide sequence. From deduced amino acid sequences, the fad3 gene was revealed to have an open reading frame(ORF) consisting of 386 amino acids with a molecular mass of 44,075 Da. The fad3 gene was compared to chloroplast $\omega$-3 fatty acid desaturase (fad7) and endoplasmic reticulum Δ12 fatty acid desaturase (fad2) to show 70% and 58% amino acid sequence homology, respectively, Especially, amino acids of internal (82 to 151) and carboxy terminal (276 to 333) regions were highly conserved, implying their requisite role for enzymatic functioning of fatty acid desaturases. IPTG-induced fad3 cDNA expression in E. coli cells was suggested to be toxic to bacterial growth.

  • PDF

Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

  • Lee, Jeong-Dong;Bilyeu, Kristin D.;Shannon, James Grover
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Soybean [Glycine max(L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates(palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increased from 23 to > 55%, and linolenic acid reduced from 8 to < 3%. Reduced palmitic acid(16:0) is conditioned by three or more recessive alleles at the Fap locus. QTLs for reduced palmitic acid have mapped to linkage groups(LGs) A1, A2, B2, H, J, and L. Genes at the Fad locus control oleic acid content(18:1). Six QTLs($R^2$=4-25%) for increased 18:1 in N00-3350(50 to 60% 18:1) explained four to 25% of the phenotypic variation. M23, a Japanese mutant line with 40 to 50% 18:1 is controlled by a single recessive gene, ol. A candidate gene for FAD2-1A can be used in marker-assisted breeding for high 18:1 from M23. Low linolenic acid(18:3) is desirable in soy oil to reduce hydrogenation and trans-fat accumulation. Three independent recessive genes affecting omega-3 fatty acid desaturase enzyme activity are responsible for the lower 18:3 content in soybeans. Linolenic acid can be reduced from 8 to about 4, 2, and 1% from copies of one, two, or three genes, respectively. Using a candidate gene approach perfect markers for three microsomal omega-3 desaturase genes have been characterized and can readily be used in for marker assisted selection in breeding for low 18:3.

  • PDF

Effects of Dietary Fatty Acid Composition on Level of Oleic Acid (ω9) in Brain Subcellular Fractions of Rats (식이 지방산이 흰쥐 뇌조직 Subcellular Fractions내 Oleic Acid(ω9) 조성에 미치는 영향)

  • Chung, Eon-Jung;Um, Young-Soak;Lee, Yang-Cha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1626-1633
    • /
    • 2004
  • In recent, the roles of oleic acid, most abundant fatty acid in myelin, were investigated in relation to the brain functions. This study examined the effects of diets either with desirable ratios of $\omega$6/ $\omega$9 and P/M/S (mixed oil-fed group: MO) or with defficient in $\omega$3 series fatty acids (safflower oil-fed group: SO) on the oleic acid composition in RBC and brain synaptosomal, mitochondrial & microsomal phospholipids. The desirable fatty acid composition was computer-searched with different fats and oils to meet right ratios of both $\omega$6/ $\omega$3 and P/M/S. Diets were fed 3 weeks before conception and new-born pups were fed maternal milk from the same mothers and same diets until 9 wks of age. At 3 wks of age, the compositions of oleic acid in brain subcellular fractions and red blood cells were constantly remained whatever the composition of dietary fatty acids. But at 9 wks of age, the composition of oleic acid in synaptosome and mitochondria were significantly higher in MO group than SO group. The composition of oleic acid in milk was significantly higher in MO group than SO group, but in case of SO group, that of oleic acid was increased by 48%, in comparison with dietary fatty acid compositions. -9 desaturase index (18:0\longrightarrow8:1) of brain synaptosome was significantly higher in MO group than SO group at 3 and 9 weeks of ages, but that of brain microsome was higher in SO group than MO group at 9 wks of age. Taken together, the presences of oleic acid in the diet was important to maintain brain functions. The origins of oleic acid in brain may suggests two hypotheses; first, the central nervous system has priority for the uptake of oleic acid, and second the nervous system can synthesize all the oleic acid it needs, independently of its presence in the diet.