• Title/Summary/Keyword: microscopy (electron, scanning)

Search Result 5,032, Processing Time 0.029 seconds

The development of PEMFC cathode using polyol method with directly grown CNT on carbon paper (Carbon paper에 직접적으로 생산한 CNT를 polyol 방법으로 Pt deposition하여 PEMFC cathode 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Since the discovery of the carbon nanotube(CNTs), they have attracted much attention because of unique properties that may impact many fields of science and technology. The considerable properties of CNTs include high surface area, outstanding thermal, electrical conductivity and mechanical stability. However, uniform deposition of Pt nanoparticles on carbon surface remains inaccessible territory because of the inert carbon surface. In this study, we prepared directly oriented CNTs on carbon paper as a catalyst support in cathode electrode. carbon surface was functionalized using aryl diazonium salt for increasing adhesion of Ni particles which is precursor for growing CNTs. For fabricate electrode, CNTs on carbon paper were grown by chemical vapor deposition using Ni catalyst and Pt nanoparticles were deposited on CNTs oriented carbon paper by polyol method. The performance was measured using Proton electrolyte Membrane Fuel Cell(PEMFC). The structure and morphology of the Pt nanoparticles on CNTs were characterized by Scanning electron Microscopy(SEM) and Transmission electron Microscopy (TEM). The average diameter of Pt nanoparticles was 3nm.

  • PDF

Characterization of Silicon Nitride Coating Films (Si-N 코팅막의 기계적 물성 및 구조 분석)

  • Go, Cheolho;Kim, Bongseob;Yun, Jondo;Kim, Kwangho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.

Serial Block-Face Imaging by Field Emission Scanning Electron Microscopy (전계방사형 주사전자현미경에 의한 연속블록면 이미징)

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.41 no.3
    • /
    • pp.147-154
    • /
    • 2011
  • Backscattered electrons (BSE) are generated at the impact of the primary electron beam on the specimen. BSE imaging provides the compositional contrast to resolve chemical features of sectioned block-face. A focused ion beam (FIB) column can be combined with a field emission scanning electron microscope (FESEM) to ensure a dual (or cross)-beam system (FIB-FESEM). Due to the milling of the specimen material by 10 to 100 nm with the gallium ion beam, FIB-FESEM allows the serial block-face (SBF) imaging of plastic-embedded specimens with high z-axis resolution. After contrast inversion, BSE images are similar to transmitted electron images by transmission electron microscopy. As another means of SBF imaging, a specialized ultramirotome has been incorporated into the specimen chamber of FESEM ($3View^{(R)}$). Internal structures of plastic-embedded specimens can be serially revealed and analyzed by $3View^{(R)}$ with a large field of view to facilitate three-dimensional reconstruction. These two SBF approaches by FESEM can be employed to unravel spatial association of (sub)cellular entities for a comprehensive understanding of complex biological systems.

Microscopic Feature, Protein Marker Expression, and Osteoinductivity of Human Demineralized Dentin Matrix

  • Park, Sung-Min;Hwang, Jung-Kook;Kim, Young-Kyun;Um, In-Woong;Lee, Geun-Ho;Kim, Kyung-Wook
    • Journal of Korean Dental Science
    • /
    • v.5 no.2
    • /
    • pp.77-87
    • /
    • 2012
  • Purpose: This study examined the scanning electron microscopic feature, protein marker expression and osteoinductive activity of demineralized dentin matrix (DDM) from human for nude mice. Materials and Methods: Twenty healthy nude mice, weighing about 20 g were used for study. DDM from Human was prepared and implanted into the dorsal portion of nude mouse. Before implantation, DDM was examined by scanning electron microscopy (SEM). Nude mice were sacrificed at 2 weeks, 4 weeks and 8 weeks after DDM grafting and evaluated histologically by H-E, MT staining. And also immunohistochemistry analysis (ostecalcin, osteopontin) was performed. Result: Dentinal tubules and collagen fibers were observed by SEM of dentin surface of DDM. The DDM induced bone and cartilage independently in soft tissues. And, the histological findings showed bone forming cells like osteoblasts, fibroblasts at 2, 4 and 8 weeks. On immunohistochemistry analysis, osteocalcin and osteopontin positive bone forming cells were observed. Conclusion: This results showed that the DDM from human has osteoinductive ability and is a good alternative to autogenous bone graft materials.

MORPHOLOGICAL STUDY BY SCANNING ELECTRON MICROSCOPY OF RUMEN DEGRADATION OF WHEAT STRAW TREATED WITH AMMONIA AND SULPHUR DIOXIDE

  • Song, Y.H.;Shimojo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.265-270
    • /
    • 1993
  • Ammonia and/or sulphur dioxide treated and untreated wheat leaf sheaths were compared for cell wall digestion by incubation with rumen liquor for 24 and 48 hours. Scanning electron microscope (SEM) was used to study the relative rate and extent of cell wall digestion. Treated wheat straw leaf sheaths were distorted, with more distortion observed in ammonia and sulphur dioxide combined treatment than any other treatment. Rumen liquor digestion for 24 hours of untreated leaf sheath showed disrupted phloem, partially ruptured parenchyma and vascular tissues and further partially distorted inner bundle sheaths and vascular bundle after 48 hours incubation. Sulphurated leaf sheaths showed extensive degraded parenchyma and sclerenchyma material in 24 hours incubation, however, all tissues were irregulary shaped in 48 hours incubation. In ammoniation, epidermal cell walls and small vascular bundles began to disintegrate by 24 hours incubation, extensively changed structure and degraded epidermal tissue by 48 hours incubation. Combination treatment of leaf sheaths degraded all cell walls of parenchyma, phloem and vascular bundle by 24 hours incubation, however, structures only of inner bundles sheath with extended land, sclerenchyma and cutinized epidermal cell walls remained.

Morphological Diversity of Various Divisions of the Rabbit Colon (집토끼 결장 각 부위의 구조에 대한 광학 및 주사전자현미경적 관찰)

  • Chung, J.W.;Chun, M.H.;Oh, S.J.;Kwun, H.S.
    • Applied Microscopy
    • /
    • v.14 no.2
    • /
    • pp.81-93
    • /
    • 1984
  • Structural differences in various divisions of the rabbit colon were investigated using light and scanning electron microscopy. For light microscopic study, various Portions of the colon from seven rabbits (2.5 kg body weight) were fixed in 10% neutral buffered formalin, and paraffin sections were stained with hematoxylin-eosin. Tissues for scanning electron microscopy were fixed in 1% glutaraldehyde-1.5% paraformaldehyde and postfixed in 1% $OsO_4$, dehydrated to 100% alcohol, transfered to isoamilacetate and dried by the critical point method. Subsequently, specimens were coated with gold and viewed with a JSM-35C scanning electron microscope. The colon displays a morphological diversity along its proximo-distal axis. Five regions can be discerned based on the macroscopic and microscopic characteristics. 1) The first segment immediately distal to the cecocolical junction possessing three teniae is approximately 5 cm ($4{\sim}6cm$) in length, and displays irregular folds of the mucosa oriented transversely similar to those of the cecum. 2) The second segment possessing three teniae is about 7 cm ($5{\sim}8cm$) in length, and is characterized by the papilla-like protrusions on the mucosal surface. 3) The third segment, possessing a single tenia is about 16 cm ($12{\sim}20cm$) in length, and also displays the papilla-like protrusions similar to the aforegoing segment. 4) Fusus coli, approximately 4 cm ($3{\sim}5cm$) in length, is free of teniae and exhibits longitudinal folds on the mucosal surface. These four portions together constitute the proximal colon. 5) The distal colon reaches a length of about 58 cm ($53{\sim}55cm$) and shows a pattern of surface irregularities with minor ridges on the mucosal folds.

  • PDF

Occurrence, Type and Ultrastructure of Calcium Oxalate Crystals in Panax ginseng (인삼(Panax ginseng)에 존재하는 Calcium Oxalate 결정체의 분포, 유형 및 미세구조)

  • Lee, Sang-Wook;Kwon, Woo-Saeng;Jeong, Byung-Kap
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.213-218
    • /
    • 2002
  • Crystalline calcium oxalate occur throughout near)y all plants species in five major forms; styloids, druses, raphids, prisms and sands. These crystals are known to be distributed in specific tissue such as cortex, xylem, phloem, cambium and epidermis. This research was undertaken to identify the occurrence, type, location and ultrastructure of druse crystals in Panax ginseng. In situ visualization, conventional light microscopy, histochemistry and scanning electron microscopy were applied for these purposes. Druse crystals in ginseng were identified as calcium oxalate by silver nitraterubeanic acid histochemistry. Calcium oxalate crystals are observed in nearly all plant organs such as leaf, petiole, peduncle, stem, rhizome, tap root and lateral root except fine root. Most frequent observation of crystals in the leaf and rhizomes were noticed. Three different types of calcium of oxalate druse crystals were identified by scanning electron microscopy.

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method

  • Lee, Sung-Hun;Yoon, Ha-Na;Yoon, Il-Sun;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.839-842
    • /
    • 2012
  • We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.