• Title/Summary/Keyword: microprocessor-based controller

Search Result 131, Processing Time 0.027 seconds

Microprocessor-Based Digital Controller Design with changing the Damping Ratio (감쇄비 변화를 마이크로프로세서로 이용한 계수형 제어기의 설계)

  • 정태원;김명환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.1
    • /
    • pp.35-40
    • /
    • 1982
  • As a general-purpose device, the microprocessor has made a large impact on many area of engineering, In this paper, a controller has been implemented using microprocessors allowing the damping ratio ζ to be changed dynamically in control systems. The results show definite improvement in response time.

  • PDF

A Study of the design of controller for microprocessor - Based Permanent magnet AC Servo motor (마이크로프로세서에 의한 SM 형 AC SERVO MOTOR 제어기의 설계에 관한 연구)

  • Kim, Ki-Young;Oh, Ki-Bong;Kim, Jung-Ha;Yoon, Byung-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.258-263
    • /
    • 1989
  • The configuration of Brushless DC moter is similar to the permanent magnet Synchronous moter. Power transistors are oftenly used to supply the switching by feedback signals of rotor positioning sensors. Brushless DC moter have been used in Aerospace and Robotics where the electromagnetic noise or the sparking of the commutator contact can not be tolerated and long - lived maintenance - free operation is required. This paper describes the design of the microprocessor - based controller for the Brushless DC moter. The controller is designed to operate for the constant torque generation and variable speed control using sinusoidal PWM inverters and resolvers as rotor positioning sensors.

  • PDF

Design of Simple Controller for Minicar BLDC Motor Based on Low Cost Microprocessor

  • Tao, Yu;Song, Doo-Young;Lei, Zhang;Park, Sung-Jun;Jung, Tae-Uk;Kim, Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.7-9
    • /
    • 2007
  • If used to drive the minicar, the BLDC Motor has advantages of weightless, efficient, small-size and credibleness. In this paper at first the position detecting method for BLDC was introduced, secondly the simulation of control algorithm was done and at last the prototype controller based one chip processor MEGA48 was fabricated. The controller proposed has characteristic of cheap cost, reliable performance and totally meeting demands of minicar control.

  • PDF

FPGA Implementation of Fuzzy Logic Controller for Maximum Power Point Tracking in Solar Power System (태양전지 최대전력점 추종제어를 위한 퍼지 제어기의 FPGA구현)

  • Lee, Woo-Hee;Kim, Hyung-Jin;Lee, Hoong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.106-111
    • /
    • 2007
  • In this study, we designed a digital fuzzy logic controller based on FPGA and microprocessor for MPPT of the sofar power generation system. A fuzzy algorithm to control the power tracking function of a boost converter has been built into the FPGA, and applied to the small scaled solar power generation system. The embodied controller showed a stable operation characteristic with the small output voltage ripple for the intensity change of solar radiation. This result proves that the implementation of the power tracking controller using FPGA is an effective way compared to the existing one using microprocessor.

Development of the Patient Monitor Using Microprocessor(II) (Microprocessor를 이용한 Patient Monitor 개발(II))

  • Kim, Nam-Hyun;Kim, Jeong-Lae;Huh, Jae-Man
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.101-106
    • /
    • 1995
  • In this paper, the patient monitor consisting of ECG/Respiration Amplification, Front end CPU, Main CPU, Main Controller, Video Amplifier, Display Controller, Waveform Generator, Bus & Power Supply, 8097 Processor was developed. This patient monitor measures the patient's states in the hospital such as elecctro-cardiography, respiration, blood pressurae and temperature. The control and processing methods based on micro-processor employ the flexibility, extensibility over other conventional system. The followings are incorporated in this system. First, ECG/RESP measures the respiration by impedence pneumography. Second, FECPU utilizes an Intel 8031 microcontroller. Third, Controller function originate from a LSI CRT controller.

  • PDF

The development of microprocessor_based controller for the electrical boiler of heat storage type (축열식 전기보일러용 마이크로프로세서 제어장치개발)

  • Kim, J.S.;Park, J.W.;Joe, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.250-253
    • /
    • 1989
  • As the necessity of increasing the midnight base load is extensively increased, electric power companies have to increase the demand of midnight electrical power by lowering the electrical charge rate at midnight. One of the most widely used midnight equipments is the heat Storage type's electrical boiler. A Single chip microprocessor controller for the heat-storage type's electrical boiler is developed. This controller call reduce the undesirable peak load at the begining of midnight (i.e.11 P.M.) time band by using backward load control method. Futhermore, this controller enables reservation of heat storge and the effective heating control the field test has been done by use the boiler for 66$m^2$ with the heater of 21KW quality.

  • PDF

Development of a New 5 DOF Mobile Robot Arm and its Motion Control System

  • Choi Hyeung-Sik;Lee Chang-Man;Chun Chang-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1159-1168
    • /
    • 2006
  • In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers w ε re developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the openGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.

An Implementation of the Position Controller for Multiple Motors Using CAN (CAN 통신을 이용한 다중모터 위치제어기 구현)

  • Yi, Keon-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a controller for the multiple DC motors using the CAN(Controller Area Network). The controller has a benefit of reducing the cable connections and making the controller boards compact through the network including expansibility. CAN, among the field buses, is a serial communication methodology which has the physical layer and the data link layer in the ISO's OSI (Open System Interconnect) 7 layered reference model. It provides the user with many powerful features including multi-master functionality and the ability to broadcast / multicast telegrams. When we use a microprocessor chip embedding the CAN function, the system becomes more economical and reliable to react shortly in the data transmission. The controller, we proposed, is composed of two main controllers and a sub controller, which have built with a one-chip microprocessor having CAN function. The sub controller is plugged into the Pentium PC to perform a CAN communication, and connected to the main controllers via the CAN. Main controllers are responsible for controlling two motors respectively. Totally four motors, actuators for the biped robot in our laboratory, are controlled in the experiment. We show that the four motors are controlled properly to actuate the biped robot through the network in real time.

Design of Battery Charge-Discharge Controller for Renewable Energy System -Focusing on Solar Battery Charge-Discharge Controller - (신재생 에너지 시스템을 위한 축전지 충방전 컨트롤러 설계 -태양광 발전 축전지 충방전 컨트롤러를 중심으로-)

  • Lee, Jae-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1363-1368
    • /
    • 2007
  • In order to utilize renewal energy such as solar power and wind power, high performance battery charge-discharge controller is essentially needed. In this paper, a PIC microprocessor-based battery charge-discharge controller for solar power system is designed and implemented. The PIC16C711 microprocessor and CCS-C compiler are used to realize stable and accurate operation of the battery controller. The proposed controller is designed to utilize the charged battery power during daytime to provide convenience to user. Current control function is included in proposed controller to cope with various type of new material energy system coming in the near future.

  • PDF

Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation (천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.