• Title/Summary/Keyword: microporous membrane

Search Result 95, Processing Time 0.016 seconds

Preparation of Microporous Silica Membrane from TEOS-$H_2O$ System and Separation Of $H_2$-$N_2$ Gas Mixture (TEOS-$H_2O$계로부터 다공성 실리카 막의 제조 및 수소-질소 혼합기체의 분리)

  • 강태범;이현경;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • The porous silica membrane was prepared from Si(${OC}_2H_5)_4-H_2O$ system by sol-gel method. To investigate the characteristics of gels and porous silica membrane, we examined gels and porous silica membrane using TG-DTA, X-ray diffractometer, IR spectrophotometer, BET, SEM and TEM. The optimum mole ratio of Si(OC$_2$H$_{5}$)$_4$ : $H_2O$ $C_2$H$_{5}$OH for porous silica membrane was 1 : 4.5 : 4. The porous silica membrane was obtained by heat treatment of the gel above 700 $^{\circ}C$. The specific surface area of sintered gel was 3.8 $m^2$/g to 902.3 $m^2$/g at 100 $^{\circ}C$ to 1100 $^{\circ}C$ The pore size of sintered gel was in the range 20 $\AA$~ 50$\AA$. The particle size of sintered gel was 15 nm to 30 nm at 30$0^{\circ}C$ to 700$^{\circ}C$. The performance of the porous silica membrane was investigated for the separation of $H_2$/$N_2$ gas mixture. Gas separation through porous silica membrane depends upon Knudsen flow and surface flow. The veal separation factor($\alpha$) of $H_2$/$N_2$ was 5.17 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor( $\bar{B}$) increased as the pressure of permeation cell Increased.sed.

  • PDF

Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries

  • Kim, Yeon-Joo;Lee, Sang-Min;Kim, Seok Hong;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.26-33
    • /
    • 2015
  • In this study, cell performance and thermal stability of lithium-ion cells with a polyimide (PI) separator are investigated. In comparison to conventional polyethylene (PE) separator, the PI separator exhibits distinct advantage in microporous structure, leading to superior reliability of the cell. The cells with PI separator exhibit good cell performances as same as the cells with PE separator, but their reliability was superior to the cell with PE separator. Especially in the hot-box test at 150 and 180℃, PI separator showed a contraction percentage close to 0% at 150℃, while the PE separator showed a contraction percentage greater than 10% in both width and length. Therefore, the PI separator can be the promising candidate for separators of the next generation of lithium-ion battery.

Semi-Automatic Hydride Generation and Atomic Absorption Determination of Bismuth with in situ Concentration in a Graphite Furnace

  • Yong-Keun Lee;Dong Soo Lee;Byung Mok Yoon;Hoon Hwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.290-295
    • /
    • 1991
  • A semi-automatic method for the determination of dissolved bismuth at parts per trillion levels is described. The method involves bismuthine generation, in situ collection of bismuthine in a graphite furnace, and atomic absorption detection. In order to facilitate semi-automation of bismuthine generation and separation from aqueous solution, Gore-tex microporous PTEE membrane is used. The absolute detection limit, taken as three times the standard deviation of the instrument noise is 2 pg. The precisions are 3.1% for 100 pg and 1.9% for 1 ng of bismuth, respectively. As many as 90 measurements can be made in an hour.

Synthesis, Characterizations and Gas Separation Property of PBEM-PMMA-POEM Terpolymer Membranes (PBEM-PMMA-POEM 터폴리머 분리막의 합성, 분석 및 기체 분리 성능)

  • Park, Byeong Ju;Kim, Na Un;Park, Jung Tae;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Terpolymers, which are chemical compounds composed of three different chemical compounds, have rarely been utilized for gas separation membranes. In this study, we demonstrate a simple process to fabricate a composite membrane for $CO_2/N_2$ separation based on a terpolymer synthesized from poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethylmethacrylate)(PBEM), poly(oxyethylene methacrylate)(POEM), and methyl methacrylate (MMA) via free radical polymerization. A solution of the as-synthesized PBEM-PMMA-POEM was coated onto a microporous polysulfone (PSf) support to form a composite membrane. The successful polymerization and the characteristics and morphology of the membrane were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). The gas permeance and $CO_2/N_2$ selectivity of the PBEM-PMMA-POEM terpolymer membrane were measured at $25^{\circ}C$. A maximum $CO_2/N_2$ selectivity of 30.2 was obtained at a $CO_2$ permeance of 57.4 GPU ($1GPU=10^{-6}cm^3$(STP)/($s\;cm^2\;cmHg$)).

Fabrication of a High Porous Polyethylene Membrane Using BET as a Novel Diluent (새로운 BET 희석제를 이용한 고다공성 폴리에틸렌 분리막 제조)

  • Cho, Inhyun;Lee, Soomi;Kim, Chang Keun
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.530-534
    • /
    • 2014
  • Polyethylene (PE) membranes having various porosities are used as microfilters and separators in lithium ion batteries. Membranes having a high porosity are required for use as separators in a large scale lithium ion secondary battery. In this study, BET was examined for use as a new nontoxic diluent for the fabrication of highly porous PE membranes by thermally induced phase separation process. It was confirmed that BET can be used as a new diluent for the fabrication of the PE membranes by exploring upper critical solution temperature type phase behavior of PE mixtures with BET. When the porosity of the membrane prepared from the PE/PO mixture was compared with that prepared from PE/BET mixture, the latter was about 1.8 times higher than the former.

A Study on the Perstraction Process Using Microporous Hollow Fiber -The Characteristics of Perstraction Using PP and Hollow Fiber- (다공성 실관막을 이용한 투과추출 공정에 관한 연구 -PP 및 PTFE실관막을 이용한 에탄올의 투과추출 특성에 관한 연구-)

  • Cheong, Won;Hwang, Eui-Yoon;Lee, Ho-Won;Kim, Woo-Sik
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.65-77
    • /
    • 1991
  • The perstraction of ethanol and acetic acid were performed for three systems of xylene-acetic acid-water, MIBK-ethanol-water, and TBP-ethanol-water, The operating variables were pressure difference between aqueous and organic phase, and superfial velocities of aqueous and organic phases. The tortuosities of PP hollow fiber membrane of Celgard X10-400 and PTFE hollow fober membrane of Tex TA001 were found to be 1.82 and 1.43 respectively, They were obtained from mass tranfer coeffidents in membrane phase for xylene-acetic acid-water systems. The permeation flux and overall mass transfer coefficient for MIBK-ethanol-water system are larger than those for TBP-ethanol-water system. This tendency is magnified with increasing the superficial velocity of organic phase. Overall mass transfer coefficient($K_o$) increases nonlinearly with the increase of superficial velocity of organic phase($V_{or}$), and the relationship between $K_o$ and $V_{or}$ is that $K_o {\propto} V_{or}^{-0.35}$. For ethanol perstraetion using the hollow fiber membrane of Gore Tex TA001, the mass transfer in membrane phase is the rate-limiting step.

  • PDF

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

Effect of Molecular Weight Distribution of Intrinsically Microporous Polymer (PIM-1) Membrane on the CO2 Separation Performance (마이크로기공 고분자(PIM-1)의 분자량 분포에 따른 이산화탄소 기체 분리막의 성능 변화 연구)

  • Ji Min Kwon;Hye Jeong Son;Jin Uk Kim;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.362-368
    • /
    • 2023
  • This research article explores the application of Polymer of Intrinsic Microporosity (PIM-1) as a cutting-edge material for CO2 gas separation membranes in response to the escalating global concern over climate change and the imperative to reduce greenhouse gas emissions. The study delves into the synthesis, molecular weight control, and fabrication of PIM-1 membranes, providing comprehensive insights through various characterization techniques. The intrinsic microporosity of PIM-1, arising from its unique crosslinked and rigid structure, is harnessed for selective gas permeation, particularly of carbon dioxide. The article emphasizes the tunable chemical properties of PIM-1, allowing for customization and optimization of gas separation membranes. By controlling the molecular weight, higher molecular weight (H-PIM-1) membranes are demonstrated to exhibit superior CO2 permeability and selectivity compared to lower molecular weight counterparts (L-PIM-1). The study's findings highlight the critical role of molecular weight in tailoring PIM-1 membrane properties, contributing to the advancement of next-generation membrane technologies for efficient and selective CO2 capture-an essential step in addressing the pressing global challenge of climate change.

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.