• Title/Summary/Keyword: microphytoplankton

Search Result 10, Processing Time 0.028 seconds

Integrated Phytoplankton Data of the west Pacific Sector of the Southern Ocean: 149-148 $^{\circ}E$ transect

  • Lee Hak Young;Cho In Sook;Greene Richard M.;Kim Jong Won
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1998
  • A total of 94 taxa were identified from the Southern Ocean, 140-148 $^{\circ}E$ and 40-53 $^{\circ}S$, as an early austral summer phytoplankton. They were 53 diatoms, 37 dinoflagellates, 2 silicoflagellates, 1 prymnesiophyte, and 1 coccolithophorid. Integrated cell numbers of nanoplankton dominated microphytoplankton from 8 stations, especially from Subantarctic zone, but integrated biomass was lower than microphytoplankton. Integrated cell numbers of diatoms dominated dinoflagellates, coccolithophorids, and prymnesiophyte, but integrated biomass of microphytoplankton were dependent to the biomass of dinoflagellates except north of the Subtropical convergence zone and south of the Antractic convergence zone. Phytoplankton community changed across the fronts and 3 different communities were observed. Fronts seem to influence on the phytoplankton community from the west Pacific Sector of the Southern Ocean.

  • PDF

Integrated Phytoplankton Data of the west Pacific Sector of the Southern Ocean: $140-148 ^{\circ}E$ transect

  • Hak Young Lee;In
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • A total of 94 taxa were identified from the Southern Ocean, 140-148 。E and 40-53。S, as an early austral summer phytoplankton. They were 53 diatoms, 37 dinoflagellates, 2 silicoflagellates, 1 prymnesiophyte, and 1 coccolithophorid. Integrated cell numbers of nanoplankton dominated microphytoplankton from 8 stations, especially from Subantarctic zone, but integrated biomass was lower than microphytoplankton. Integrated cell numbers of diatoms dominated dinoflagellates, coccolithophorids, and pnrnnesiophyte, but integrated biomass of microphytoplankton were dependent to the biomass of dinoflagellates except north of the Subtropical convergence zone and south of the Antractic convergence sone. Phytoplankton community changed across the fronts and 3 different communities were observed. Fronts seem to influence on the phytoplankton community from the west Pacific Sector of the Southern Ocean.

  • PDF

Ballast-water Microphytoplankton Diversity and Survivability from International Ships Berthed at Ulsan and Pyeongtaek Ports, Korea (울산과 평택항에 정박된 국제상선의 평형수에서 소형식물플랑크톤의 활성능력)

  • Baek, Seung-Ho;Jang, Min-Chul;Jang, Pung-Guk;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.113-125
    • /
    • 2011
  • In order to assess the survival success of microphytoplankton species in ship ballast water, we examined microphytoplankton diversity from international commercial ships berthed at Ulsan and Pyeongtaek Ports, Korea, and also subjected them to laboratory studies. The ages of ballast water in each ship ranged from 1 to 365 days. Vessels originated from coastal China (Weihai, Lianyunsang and Shanghai), Chile, and from the Yellow and Pacific Oceans. The numbers of species and phytoplankton standing crops in uploaded ballast water were significantly related to the age of ballast water. The most diverse taxonomic group was diatoms. In the laboratory study, the value of in vivo fluorescence in M/V Spring Lyra gradually increased with increasing nutrients such as nitrate and phosphate. Phytoplankton in new (9 days), medium (31 days) and old (365 days) ballast water successfully survived under typical nutrient condition of port water and F/2 medium at $15^{\circ}C$ and $20^{\circ}C$, whereas phytoplankton in ballast water treatment did not survive, regardless of optimal temperature. Colonization process was dominated by diatoms; Skeletonema coastatum for M/V Spring Lyra, Thalassiosira pseudonana and Thalassiosira for M/V Han Yang, Thalassiosira pacifica and Odontella aurita for M/V Modern Express, and Chaetoceros pseudocurvisetus and Pseudo-nitzschia seriata for M/V Asian Legend. The successful establishment of non-native species was also related to nutrient richness. Our laboratory design can be applied as a practical tool to assess the survivability of invasive microphytoplankton introduced into local waters of Ulsan and Pyeongtaek.

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.

Temporal and Spatial Variations of Size-structured Phytoplankton in the Asan Bay (아산만 식물플랑크톤 크기구조의 시.공간적 변동)

  • Hyun Bong-Kil;Sin Yong-Sik;Park Chul;Yang Sung-Ryull;Lee Young-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.7-18
    • /
    • 2006
  • Samples were collected from five stations monthly from October 2003 to September 2004 to investigate seasonal variation of size structure of phytoplankton and relationship between size-fractionated phytoplankton and environmental factors in the Asan Bay. The contribution of large cells (microphytoplankton, $>20\;{\mu}m$) to total concentrations of chlorophyll $\alpha$ was higher than small cells (nanophytoplankton, $3\sim20\;{\mu}m$; picophytoplankton, $<3\;{\mu}m$) during the sampling period. Especially, large cells contributed 80% to the total chlorophyll a from February, 2004 to April 2004 when chlorophyll $\alpha$ concentrations were high. The size structure of phytoplankton shifted from micro-size class to nano-size class and picophytoplankton rapidly increased when phytoplankton biomass decreased in May 2004. Microphytoplankton exhibited a high biomass in the upper region during winter-spring season whereas nano- and picophytoplankton showed two peaks in the middle-lower regions (Station 3,5) during spring and summer. Microphytoplankton are most likely controlled by water temperature and nutrient supply during the cold season whereas nano- and picophytoplankton may be affected by stratification, light exposure during the warm season.

Water Temperature and Community of Phytoplankton in Youngsan River, Korea (수온에 따른 영산강 식물플랑크톤군집 변동)

  • Jeong, Eun-Jeong;Na, Jeong-Eun;Kim, Gyu-Man;Shim, Sung-Sun;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.56-63
    • /
    • 2010
  • In order to clarify the ecological properties of phytoplankton community, the distribution of phytoplankton and the relation of water temperature and size-fractionation measurements were studied from November 2004 to August 2005 in Youngsan River, Korea. A total of 265 phytoplankton species was identified. It consists of 48 genera and 123 species (46%) of Chlorophyceae, 27 genera and 89 species (34%) of Bacillariophyceae, 12 genera and 25 species (9%) of Cyanophyceae, respectively. From size fractionation analysis, nanophytoplankton (2~20 ${\mu}m$) dominated from early spring to early summer, and microphytoplankton (20~200 ${\mu}m$) from summer to winter. The relationship between chl-a and nanophytoplankton showed high correlation coefficient value ($r^2$=0.93) from Najudaegyo site. The correlation coefficient values between water temperature and nanophytoplankton were low except Dongkangdaegyo site which showed high value ($r^2$=0.73).

Hydrodynamic control on site-structured phytoplankton blooms in a periodically mixed estuary

  • Sin, Yong-Sik
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2001.10a
    • /
    • pp.137-144
    • /
    • 2001
  • A Plankton ecosystem model was developed to investigate effects of hydrodynamic processes including advection and diffusion on size-structured phytoplankton dynamics in the mesohaline zone of the York River estuarine system, Virginia, USA. The model included 12 state variables representing the distribution of carbon and nutrients in the surface mixed layer. Groupings of autotrophs and heterotrophs were based on cell site and ecological hierarchy Forcing functions included incident radiation, temperature, wind stress, mean How and tide which includes advective transport and turbulent mixing. The ecosystem model was developed in FORTRAN using differential equations that were solved using the 4th order Runge-Kutta technique. The model showed that microphytoplankton blooms during winter-spring resulted from a combination of vertical advection and diffusion of phytoplankton cells rather than in-situ production in the lower York River estuary.

  • PDF

Seasonal Variation of Phytoplankton Community Structure in NortheasternCoastal Waters off the Korean Peninsula

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Noh, Jae-Hoon;Choi, Joong-Ki;Jeon, In-Seong
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Phytoplankton community in the coastal waters off the northeastern Korean Peninsula were characterized from May 2002 to August 2003. Taxonomic composition, abundance and biomass were determined at two water depths at 10 sample sites. A total of 153 phytoplankton species including 121 diatoms, 28 dinoflagellates, 7 green algae and 7 other species were identified. The mean abundance of phytoplankton varied from 15 to 430 cells mL–1 in the surface layer and from 11 to 545 cells mL–1 in the bottom layer, respectively. Phytoplankton was more abundant in coastal stations relative to those in more open ocean. The most dominant species were marine diatoms such as Thalassionema nitzschioides, Licmorphora abbreviata, Chaetoceros affinis and Chaetoceros socialis. In addition, a few limnotic diatoms including Fragilaria capucina v. rumpens, the green alga Scenedesmus dimorphus, some marine dinoflagellates and Cryptomonas sp. appeared as dominant species. Mean concentration of total chlorophyll-a varied from 0.22 to 7.87 μg chl-a L–1 and from 0.45 to 6.79 μg chl-a L–1 in the surface and bottom layers, respectively. The contribution of phytoplankton each size-fractionated varied highly with season. The contribution of microphytoplankton to total biomass of phytoplankton in the surface and bottom layer was high in February and August 2003, and that of nano-phytoplankton was high in May 2002 in both surface and bottom layers.

Seasonal Characteristics of Phytoplankton Distribution in Asan Bay (아산만 식물플랑크톤의 계절별 군집 분포 특성)

  • Yi, Sang-Hyon;Sin, Yong-Sik;Yang, Sung-Ryull;Park, Chul
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • Samples were collected from five stations in February, May, July, and September 2004 to investigate seasonal variations in the phytoplankton community and the relationship between dominant genera and environmental factors in Asan Bay. In February, microphytoplankton contributed 80% to the total chlorophyll a. Diatom dominated the phytoplankton community, accounting for 85.9% of the total cell number, followed by dinoflagellates (6%). Dominant species were Skeletonema costatum and Thalassiosira spp. Abundant diatom, including S. costatum and Thalassiosira spp., may be affected by water temperature and silicate at Station 1 and 2 in February 2004. In May, the nanophytoplankton contribution to total phytoplankton was higher than in other seasons. However, abundance of S. costatum and Thalassiosira spp. decreased, since the growth of S. costatum and Thalassiosira spp. might be limited by phosphates (P) resulting from low P concentration and a high DIN:DIP ratio in the outer region. In July, dominant phytoplankton groups were diatom (39%), cryptophyceae (28%), and cyanophyceae (20%). Dominant genera were Oscillatoria spp. and phytoflagellate of a monad type in the inner region (Station 1 and 2), whereas S. costatum was dominant in the outer region (Station 4 and 5). In September, dominant phytoplankton were diatom (69%) and cryptophyceae (28%). Dominant genera were phytoflagellate of the monad type, S. costatum in the inner region, while Chaetoceros spp. was dominant in the outer region.

Size-structure and Primary Productivity of Phytoplankton from Major Lakes in Sumjin and Yeongsan Watershed (섬진강.영산강 수계 주요 호소의 식물플랑크톤 크기구조 및 일차생산력)

  • Yi, Hyang-Hwa;Shin, Yong-Sik;Yang, Sung-Ryull;Chang, Nam-Ik;Kim, Dong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.419-430
    • /
    • 2007
  • Physiochemical factors, phytoplankton biomass (Chl ${\alpha}$) and primary productivity were investigated seasonally in the three lakes of Dongbok, Juam, and Yeongsan during April 2004${\sim}$March 2006. Microphytoplankton dominated (>60%) in Dongbok lake, and phytoplankton biomass was high in the upper area, especially during April 2004, whereas they were high in the lower area during June 2004. In Juam lake, the high phytoplankton biomass in April 2004 was contributed by nanophytoplankton. In Yeongsan lake, chlorophyll a was high in August with high contribution of nanophytoplankton. Primary production was highest in Dongbok lake, and then followed by Yeongsan and Juam lakes. Regression analysis in Dongbok take showed that Chl ${\alpha}$ and primary production had close relations with secchi depth. In Juam lake, phosphate were correlated with the Chl ${\alpha}$, while temperature and TN was correlated with primary production in the lower area. In Yeongsan lake, Chl ${\alpha}$ have positively correlation with TN/TP. Primary production in the upper have high relationship with secchi depth, however, in the lower have high relationship with turbidity. Linear regression analysis showed that nutrients of nitrogen and phosphorus should be reduced for the protections in Juam and Dongbok lakes. We suggested that suspended solids and phytoplankton growth related to turbidity are needed to manage in Yeongsan lake.