• Title/Summary/Keyword: micron size

Search Result 262, Processing Time 0.03 seconds

Nanostructured Materials and Nanotechnology : Overview

  • Muhammed, Mamoun;Tsakalakos, Thomas
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1027-1046
    • /
    • 2003
  • Nanostructured materials can be engineered by the controlled assembly of several suitable nano-objects as the building blocks. While, materials properties are determined by their atomic and molecular constituents and structure, their functionalities emerge when the microstructure of these early ensembles is in the nanometer regime. The properties and functionalities of these ensembles may be different as their size grows from the nano-regime to the micron regime and bulk structures. Nanotechnology, offers a unique possibility to manipulate the properties through the fabrication of materials using the nano-objects as building blocks. Nanotechnology is therefore considered an enabling technology by which existing materials, virtually all man-made materials, can acquire novel properties and functionalities making them suitable for numerous novel applications varying from structural and functional to advanced biomedical in-vivo and in-vitro applications.

A Study for Global Planarization of Mutilevel Metal by CMP (Chemical Mechanical Polishing (CMP) 공정을 이용한 Mutilevel Metal 구조의 광역 평탄화에 관한 연구)

  • 김상용;서용진;김태형;이우선;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1084-1090
    • /
    • 1998
  • As device sizes are scaled down to submicron dimensions, planarization technology becomes increasingly important for both device fabrication and formation of multilevel interconnects. Chemical mechanical polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. The polishing process has many variables, and most of which are not well understood. The factors determine the planarization performance are slurry and pad type, insert material, conditioning technique, and choice of polishing tool. Circuit density, pattern size, and wiring layout also affect the performance of a CMP planarization process. This paper presents the results of studies on CMP process window characterization for 0.35 micron process with 5 metal layers.

  • PDF

Characteristics of Porous YAG Powders Fabricated by PVA Polymer Solution Technique

  • Lee, S.J.;Shin, P.W.;Kim, J.W.;Chun, S.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.438-439
    • /
    • 2006
  • Pure and stable YAG $(Y_3Al_5O_{12})$ powders were synthesized by a PVA (polyvinyl alcohol) polymer solution technique. PVA was used as an organic carrier for the precursor ceramic gel. The precursor gels were crystallized to YAG at relatively a low temperature of $900\;^{\circ}C$. The synthesized powders, which have nano-sized primary particles, were soft and porous, and the porous powders were ground to sub-micron size by a simple ball milling process. The ball-milled powders were densified to 94% relative density at $1500\;^{\circ}C$ for 1h. In this study, the characteristics of the synthesized YAG powders were examined.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I) (환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I))

  • Hwang Joon;Chung Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.

Thermal Radiation Pressure Force on Atmosphereless Bodies

  • Bach, Yoonsoo P.;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2019
  • Thermal fracture and cracking near the perihelion are found to be a possible mechanism to produce the dust trail of the near-Earth asteroid, (3200) Phaethon (Jewitt and Li, 2013, ApJ 771, L36). It is, however, not well understood how the debris particles were escalated from the regolith against the asteroid's gravity. Thus, the scenario that these debris particles are responsible for the detected activities (Li and Jewitt, 2013, ApJ, 145, 154), is not complete yet. Here, we hypothesize that the thermal radiation pressure around the perihelion passage would exert substantial force outwards from the regolith on dust grains, and they can be lifted up and contributes the dust tail formation with further help of solar radiation pressure. Our modeling indicates that particles with sizes of roughly ~1-10 micron can be ejected from Phaethon by the mechanism, while a detailed model of gravitational field is required for accurate estimation of the particle size range. Our idea is not necessarily limited to Phaethon case, but is applicable to any atmosphereless bodies.

  • PDF

Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings

  • Yamaguchi, Masahiro;Otani, Yoko;Takeda, Kenta;Lenggoro, I. Wuled;Ishida, Atsushi;Yazaki, Kenichi;Noguchi, Kyotaro;Sase, Hiroyuki;Murao, Naoto;Nakaba, Satoshi;Yamane, Kenichi;Kuroda, Katsushi;Sano, Yuzou;Funada, Ryo;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.259-267
    • /
    • 2012
  • To clarify the effects of black carbon (BC) particles on growth and gas exchange rates of Asian forest tree species, the seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to BC particles with sub-micron size for two growing seasons from 1 June 2009 to 11 November 2010. The BC particles deposited after the exposure to BC were observed on the foliar surface of the 4 tree species. At the end of the experiment, the amount of BC accumulated on the foliar surface after the exposure to BC aerosols were 0.13, 0.69, 0.32 and 0.58 mg C $m^{-2}$ total leaf area in F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings, respectively. In August 2010, the exposure to BC particles did not significantly affect net photosynthetic rate under any light intensity, stomatal diffusive conductance to water vapour ($g_s$), stomatal limitation of photosynthesis, response of $g_s$ to increase in vapour pressure deficit and leaf temperature under light saturated condition in the leaves or needles of the seedlings. These results suggest that the BC particles deposited on the foliar surface did not reduce net photosynthesis by shading, did not increase leaf temperature by absorption of irradiation light, and did not induce plugging of stomata in the leaves or needles of the seedlings. There were no significant effects of BC particles on the increments of plant height and stem base diameter during the experimental period and the whole-plant dry mass at the end of the experiment. These results indicate that the exposure to BC particles with sub-micron size for two growing seasons did not significantly affect the growth and leaf or needle gas exchange rates of F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings.

Formation of Micron-sized Alginate Microparticles Using Reverse Micelles (역미셀을 이용한 마이크론 수준의 초미세 알긴산 입자 제조)

  • Imm, Jee-Young;Cho, Young-Hee;Han, Dae-Seok;Kim, Seok-Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.835-840
    • /
    • 2003
  • Micron-sized alginate microparticles were formed in the water pools of reverse micelles (RM) composed of hexane/aerosol OT(AOT)/water through the gelation process between sodium alginate and $CaCl_2$. The size of microparticles formed increased as Wo (the molar ratio of water to surfactant) increased from 5 to 10. The microparticles became aggregated at Wo of 15, and stable RM no longer existed at Wo of 20. The characteristics of microparticles prepared at Wo of 5 and 10 showed significant differences in area, maximum diameter, minimum diameter, mean diameter, and perimeter of microparticles (p<0.05). However, there was no difference in appearance and roundness between the microparticles These results indicate that the size of microparticles are affected by Wo, whereas the overall shape of microparticles are not substantially influenced within Wo values used for stable RM formation. The mean diameter of microparticles was about $2{\sim}2.5\;{\mu}m$ and much smaller $(70{\sim}1,000\;times)$ than the reported sue of alginate microparticles formed in an aqueous medium.

A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations (전기화학적 해석을 통한 PCB용 구리도금에 대한 전류밀도의 영향성 연구)

  • Kim, Seong-Jin;Shin, Han-Kyun;Park, Hyun;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2022
  • The copper plating process used to fabricate the submicron damascene pattern of Cu wiring for Si wafer was applied to the plating of a PCB pattern of several tens of microns in size using the same organic additives and current density conditions. In this case, the non-uniformity of the plating thickness inside the pattern was observed. In order to quantitatively analyze the cause, a numerical calculation considering the solution flow and electric field was carried out. The calculation confirmed that the depletion of Cu2+ ions in the solution occurred relatively earlier at the bottom corner than the upper part of the pattern due to the plating of the sidewall and the bottom at the corner of the pattern bottom. The diffusion coefficient of Cu2+ ions is 2.65 10-10 m2/s, which means that Cu2+ ions move at 16.3 ㎛ per second on average. In the cases of small damascene patterns, the velocity of Cu2+ ions is high enough to supply sufficient ions to the inside of the patterns, while sufficient time is required to replenish the exhausted copper ions in the case of a PCB pattern having a size of several tens of microns. Therefore, it is found that the thickness uniformity can be improved by reducing the current density to supply sufficient copper ions to the target area.

Analysis of Attrition Rate of Y2O3 Stabilized Zirconia Beads with Different Microstructure and Mechanical Properties (고에너지 분쇄 매체 지르코니아 Beads의 미세구조 및 기계적 특성에 따른 마모율 분석)

  • Kim, Jung-Hwan;Yoon, Sae-Jung;Hahn, Byung-Dong;Ahn, Cheol-Woo;Yoon, Woon-Ha;Choi, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 2018
  • Particle size reduction is an important step in many technological operations. The process itself is defined as the mechanical breakdown of solids into smaller particles to increase the surface area and induce defects in solids, which are needed for subsequent operations such as chemical reactions. To fabricate nano-sized particles, several tens to hundreds of micron size ceramic beads, formed through high energy milling process, are required. To minimize the contamination effects during high-energy milling, the mechanical properties of zirconia beads are very important. Generally, the mechanical properties of $Y_2O_3$ stabilized tetragonal zirconia beads are closely related to the mechanism of phase change from tetragonal to monoclinic phase via external mechanical forces. Therefore, $Y_2O_3$ distribution in the sintered zirconia beads must also be closely related with the mechanical properties of the beads. In this work, commercially available $100{\mu}m-size$ beads are analyzed from the point of view of microstructure, composition homogeneity (especially for $Y_2O_3$), mechanical properties, and attrition rate.

The Characteristics of Wet Etch Process for Sub-micron Channel pattern with High Aspect Ratios (고 종횡비의 미세 채널 패턴에서의 습식 식각 특성 분석)

  • Lee, Chun-Su;Choe, Sang-Su;Baek, Jong-Tae;Yu, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.208-214
    • /
    • 1995
  • In order to study on the penetrations of HF solution acording to the geometrical shrinkage of contact-hole pattern size, the wet etch characteristics for oxide in microchannel patterns was investigated. Microchannel patterns of LPCVD oxide surrounded by nitride film, with dimensions of 0.1~1$\mu\textrm{m}$ height and 0.1~20$\mu\textrm{m}$, width, were fabricated. And the etch rates of oxide in HF solution were observed. It was found that oxide etch rate for micro-channel patterns in HF was not affected by pattern sizes and initial aspect ratios up to $0.1 \times 0.1 \mu \textrm{m}^{2} size and 1.2$\mu\textrm{m}$ depth. Finally, it was concluded that there were no special limitations for penetrations of HF solution in wet processes according to the geometrical shrinkage of contact-hole pattern size.

  • PDF