• Title/Summary/Keyword: micron size

Search Result 264, Processing Time 0.025 seconds

VLSI Implementation of H.264 Video Decoder for Mobile Multimedia Application

  • Park, Seong-Mo;Lee, Mi-Young;Kim, Seung-Chul;Shin, Kyoung-Seon;Kim, Ig-Kyun;Cho, Han-Jin;Jung, Hee-Bum;Lee, Duk-Dong
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.525-528
    • /
    • 2006
  • In this letter, we present a design of a single chip video decoder called advanced mobile video ASIC (A-MoVa) for mobile multimedia applications. This chip uses a mixed hardware/software architecture to improve both its performance and its flexibility. We designed the chip using a partition between the hardware and software blocks, and developed the architecture of an H.264 decoder based on the system-on-a-chip (SoC) platform. This chip contains 290,000 logic gates, 670,000 memory gates, and its size is $7.5\;mm{\times}7.5\;mm$ (using 0.25 micron 4-layers metal CMOS technology).

  • PDF

Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode (고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조)

  • Kim, Jong-Min;Jung, Hang-Chul;Kang, An-Soo;Hong, Hyun-Seon
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.

A MPEG-4 Video Codec Chip with Low Power Scheme for Mobile Application

  • Park, Seongmo;Lee, Miyoung;Kwangki Ryoo;Hanjin Cho;Kim, Jongdae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1288-1291
    • /
    • 2002
  • In this paper, we present a design of mpeg-4 video codec chip to reduce the power consumption using frame level clock gating and motion estimation skip scheme. It performs 30 grames/s of codec (encoding and decoding) mode with quarter-common intermediate format(QCIF) at 27MHz. A novel low-power techniques were implemented in architectural level, which is 35% of the power dissipation for a conventional CMOS design. This chip performs MPEG-4 Simple Profile Level 2(Simple@L2) and H.263 base mode. Its contains 388,885 gates, 662k bits memory, and the chip size was 9.7 mm x 9.7 mm which was fabricated using 0.35 micron 3-layers metal CMOS technology.

  • PDF

A Study on the Manufacturing Technology Development of High Purity NanoPowder (고순도 나노분말 제조기술 개발에 관한 연구)

  • 박영문;차용훈;성백섭;윤길하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1178-1181
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to learn to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

Modeling of a Non-contact Type Precision Magnetic Displacement Sensor (비접촉식 정밀 변위 측정용 자기센서 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining(II)

  • Hwang Joan;Hwang Duk-Chul;Chung Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.3-7
    • /
    • 2005
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling and lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor. Cutting fluid's aerosol via atomization process can generate human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol of which particle size less than 10 micron appears near working zone under typical operation conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided as a basis of environmental impact analysis for environmental consciousness.

Effects of Vortex Viscosity Variation on the Flowfields in a Micro-slot between Rotating Surfaces of Revolution (와점성 변화가 회전곡면으로 이루어진 마이크로 슬롯 유동장에 미치는 영향)

  • Choi, G.W.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.591-596
    • /
    • 2001
  • Micron-size mechanical devices are becoming more prevalent, both in commercial applications and in scientific inquiry. Within the last decade, a dramatic increase in research activities has taken place, mostly due to the rapidly expanding growth of applications in areas of MEMS(Micro-Electro-Mechanical Systems), bioengineering, chemical systems, and advanced energy systems. In this study, we have described the effects of vortex viscosity variation on the flowfields in a micro-slot between rotating surfaces of revolution using a micropolar fluid theory. In order to solve this problem, we have used boundary layer equations and applied non-zero values of the microrotation vector on the wall. The results are compared with the corresponding flow problems for Newtonian fluid. Results show that the coefficient $\delta$ controls the main part of velocity ${\upsilon}_x$ and the coefficient M controls the main part of microrotation component ${\Omega}_{\theta}$.

  • PDF

A Study on the Development of the Superprecision Nano Separator (초정밀 나노 분급기 개발에 관한 연구)

  • 성백섭;윤길하;차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.27-32
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to loam to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

Effects of Morphology on Energy transfer and Device performance in Phosphorescent Dye Doped Polymer Light Emitting Devices

  • Noh, Yong-Young;Lee, Chang-Lyoul;Kim, Jang-Joo;Yase, Kiyoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.98-101
    • /
    • 2002
  • The effect of morphology on energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes is reported. We selected two host polymers (PVK and PFHP) which have nearly the same potential for the energy transfer to Ir(ppy)$_3$. The PFHP:Ir(ppy)$_3$ film showed b-micron size aggregation, whereas the PVK:Ir(ppy)$_3$ film showed homogeneous and smooth images. As a result, energy transfer is efficient with high emission efficiency in PVK:Ir(ppy)$_3$ whereas little energy transfer and low quantum efficiency are obtained in PFHP:Ir(ppy)$_3$.

  • PDF

Continuous Propionic Acid Production from Cheese Whey Using In Situ Spin Filter

  • Gupta, Achin;Srivastava, Ashok K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • The potential use of spin filter device to retain Propionibacterium acidipropionici in the bioreactor under continuous mode of fermentation, and improve acid productivity, was examined. The yield of propionic acid based on lactose concentration was 51% in batch and 54% in continuous (dilution rate = 0.05 h(sup)-1) operation. The yield in continuous fermentation with cell retention using spin filter of 10 micron size (dilution rate = 0.05 h(sup)-1) was even higher at 70% (w/w). The volumetric productivity under batch and continuous mode of operation were 0.312g L(sup)-1 h(sup)-1 and 0.718g L(sup)-1 h(sup)-1 respectively. Continuous fermentation with cell retention demonstrated even higher volumetric productivities at 0.98g L(sup)-1 h(sup)-1 with out clogging problems. It could be used for utilization of cheese whey to produce propionic acid at higher yield and productivities.

  • PDF