• Title/Summary/Keyword: microloading effect

Search Result 5, Processing Time 0.018 seconds

Study on the Etching Characteristics of $0.2\mu\textrm{m}$ fine Pattern of Ta Thin film for Next Generation Lithography Mask (차세대 노광공정용 Ta박막의 $0.2\mu\textrm{m}$ 미세패턴 식각특성 연구)

  • Woo, Sang-Gyun;Kim, Sang-Hoon;Ju, Sup-Youl;Ahn, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.819-824
    • /
    • 2000
  • In this research, the etching characteristics of Ta thin film with chlorine plsama have been studied by Electron Cyclotron Resonance (ECR) plasma etching system. The effects of microwave power, RF bias power, working pressure and gas chemistry on the etching profiles have been investigated. The microloading effect, which was observed at fine pattern formation, was effectively suppressed by double step etching, and anisotropic $0.2{\mu\textrm{m}}$ L&S patterns were successfully generated.

  • PDF

Study on the Etching Characteristics of Fine Ta patterns by Actinometry Method (Actinometry를 이용한 Ta 미세 패턴 식각 특성에 관한 연구)

  • 김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.43-47
    • /
    • 2000
  • The etching characteristic of a tantalum thin film with pure chlorine plasma was studied using an electron cyclotron resonance etcher system. Optical emission actinometry (OEA) was used for the study of the etching mechanism of a tantalum thin film and optimum process condition was achieved by OEA study. Based on this mechanism, double step etching was performed and 0.15 $\mu\textrm{m}$ L & S was acquired successfully suppressing the microloading effect.

  • PDF

Etching Characteristics of Fine Ta Patterns with Electron Cyclotron Resonance Chlorine Plasma

  • Kim, Sang-Hoon;Woo, Sang-Gyun;Ahn, Jin-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.97-102
    • /
    • 2000
  • We have studied etching characteristic of Ta film using Electron Cyclotron Resonance (ECR) etcher system. Microwave source power. RF bias power. and working pressure were varied to investigate the etch Profile. And we have used two step etching method to acquire the goWe have studied etching characteristic of Ta film using Electron Cyclotron Resonance (ECR) etcher system. Microwave source power. RF bias power. and working pressure were varied to investigate the etch Profile. And we have used two step etching method to acquire the good etch profile preventing the microloading effect.od etch profile preventing the microloading effect.

  • PDF

A Study on the Mask Fabrication Process for X-ray Lithography (X-선 노광용 마스크 제작공정에 관한 연구)

  • 박창모;우상균;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2000
  • X-ray lithography mask with SiC membrane and Ta absorber patterns has been fabricated using ECR plasma CVD, d.c. magnetron sputtering, and ECR plasma etching. The stress of stoichiometric SiC film was adjusted by rapid thermal annealing under $N_2$, ambient. Adjusting the working pressure during sputtering process resulted in a near-zero residual stress, reasonable density, and smooth surface morphology of Ta film. Cl-based plasma showed a good etching characteristics of Ta, and two-step etching process was implemented to suppress microloading effect fur sub-quarter $\mu\textrm{m}$ patterning.

  • PDF

The Silylation Photo Resist Process and the Enhanced-Inductively Coupled Plasma (E-ICP) (Silylation Photo resist 공정과 Enhanced-Inductively Coupled Plasma (E-ICP))

  • 정재성;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.922-925
    • /
    • 1999
  • The Silylation photo-resist etch process was tested by Enhanced-ICP dry etcher. The comparison of the two process results of micro pattern etching with 0.25${\mu}{\textrm}{m}$ CD by E-ICP and ICP reveals that E-ICP has better quality than ICP The etch rate and the microloading effect was improved in E-ICP Especially, the problem of the lateral etch was improved in E-ICP.

  • PDF