• Title/Summary/Keyword: microheater

Search Result 39, Processing Time 0.023 seconds

A Study on the Fabrication of a Thremopneumatic micropump (열공압형 마이크로 펌프의 제작에 관한 연구)

  • Kim, Y.S.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1960-1962
    • /
    • 1996
  • A thermopneumatic micropump with two micronozzles has been fabricated and tested. The actuator consists of a p+ diaphragm and a pyrex glass on which a microheater is deposited. Two micronozzles are fabricated on either side of a single silicon wafer and behave as a dynamic passive valves. The actuator and the micronozzle are assembled to make a micropump. The center deflection of the actuator diaphragm to step voltage input has been measured. The dynamic test hag been performed by measuring the center deflection of the diaphragm under various input voltages and duty ratios. Also dynamic pumping test is performed. The measured built-up pressure between inlet and outlet of the micropump is 80 Pa for the actuation at 20V, 10 Hz.

  • PDF

Novel Micro Gas Generator of Carbon Dioxide for Actuation and Gas Source (구동력과 가스 제공을 위한 이산화탄소 발생기)

  • Choi Yo Han;Son Sang Uk;Lee Seung S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.970-975
    • /
    • 2005
  • This paper presents a novel microgenerator of $CO_2$ (carbon dioxide) gas. $NaHCO_3$ (sodium bicarbonate) in a chamber is decomposed by the underlaid microheater. Alternatively, water droplet is caged by paraffin layer and released by heating. The released water dissolve HOC(COOH)$(CH_2COOH)_2$ (citric acid) powder and then, $NaHCO_3$ reacts with the solubilized HOC(COOH)$(CH_2COOH)_2$ and $CO_2$ is produced. Micropumps actuated by $CO_2$ generation were fabricated. A portable micro cell incubator of which pH is controlled by the produced $CO_2$ is also presented as one of the further applications.

Variable-focus Liquid Lens Based on a Laterally-integrated Thermopneumatic Actuator

  • Lee, June Kyoo;Park, Kyung-Woo;Lim, Geunbae;Kim, Hak-Rin;Kong, Seong Ho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • We report a focal-length tunable liquid lens based on thermopneumatically driven fluidic pressure. The fluidic pressure is generated by deformation of an elastomeric diaphragm induced by thermopneumaticity from a laterally integrated microheater sealed within an air chamber. The pressure is transmitted by a confined liquid to a lens diaphragm through an internal fluid channel. The liquid filling under the lens diaphragm functions as a liquid lens for dynamic focusing with properties depending on the curvature of the deformed diaphragm. The diaphragm area of the air chamber is designed five times larger than that of the lens cavity to yield high focal-length tunability by amplified deflection of the lens diaphragm. With our method, we achieved excellent focal-length tunability from infinity (without an input current) to 4 mm (with an input current of 12 mA) with a lens aperture diameter of 2 mm.

Numerical Analysis on the Design of a Thermal Mass Air Flow Sensor with Various Heating Modes (가열모드에 따른 열식 질량유량센서의 설계 해석)

  • Jeon, Hong-Kyu;Lee, Joon-Sik;Park, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.876-883
    • /
    • 2007
  • Numerical simulations are conducted for the design of a micro thermal mass air flow sensor (MAFS), which consists of a microfabricated heater and thermopiles on the silicon-nitride ($Si_3N_4$) thin membrane structure. It is important to find the proper locations of these thermal elements in the design of MAFS with improved sensitivity. Three heating modes of the micro-heater are considered: constant temperature, constant power and heating pulses. The analyses are focused on the membrane temperature profile near the sensing section. Considered are the practical flow velocities, ranging from 3 m/s to 35 m/s, and the corresponding Reynolds numbers from 1000 to 10000. The results show that one of optimum sensing locations is about $100{\mu}m$ away from the microheater. It is concluded that the heating mode and configurations of thermal elements are the main factors for the MAFS with higher sensitivity.

PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection (시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩)

  • Cho Chul-Ho;Cho Woong;Hwang Seung-Yong;Ahn Yoo-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1261-1268
    • /
    • 2006
  • This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.

Measurements of Thermal Characteristics for a Micro-Fabricated Thermal Mass Air Flow Sensor With Real-Time Controller (실시간 제어기를 이용한 마이크로 열식 질량공기 유량센서의 열특성 측정)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.573-579
    • /
    • 2009
  • A thermal mass air flow sensor, which consists of a micro-heater and thermal sensors on the silicon-nitride thin membrane structure, is micro-fabricated by MEMS processes. Three thermo-resistive sensors, one for the measurement of microheater temperature, the others for the measurement of membrane temperature upstream and downstream of the micro-heater respectively, are used. The micro-heater is operated under the constant temperature difference mode via a real time controller, based on inlet air temperature. Two design models for microfabricated flow sensor are compared with experimental results and confirmed their applicabilities and limitations. The thermal characteristics are measured to find the best flow indicator. It is found that two normalized temperature indicators can be adopted with some advantages in practice. The flow sensor with this control mode can be adopted for wide capability of high speed and sensitivity in the very low and medium velocity ranges.

Experimental Study of the Behavior Characteristics of Actuator Diaphragms in Thermopneumatic Micropumps (열공압형 마이크로펌프의 액추에이터 박막 거동 특성에 관한 실험적 연구)

  • Lee, Jong-Mun;Kim, Young-Deuk;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.599-606
    • /
    • 2010
  • In the present study, actuators with diaphragms of different thickness and chambers of different diameter are fabricated to examine experimentally how the behavior characteristics of the actuator diaphragm in a thermopneumatic micropump are affected by diaphragm thickness and chamber diameter under various operating conditions with different values of input voltage and frequency. The actuator comprises a microheater set on Pyrex glass, a chamber, and a diaphragm. For all values of the input energy, as the frequency decreases below 10 Hz, the maximum center deflection of the diaphragm greatly increases irrespective of diaphragm thickness and chamber diameter. At low frequencies, as the heat energy supplied to the chamber increases, the center of deflection of the diaphragm increases; the magnitude of deflection is high for thin diaphragms and for diaphragms whose chambers have small diameters. At frequencies higher than 10 Hz, all the design variables such as diaphragm thickness, chamber diameter, and the input energy have negligible effect on the center deflection of the diaphragm.

Study on Microbiochip for Buccal Cell Lysis and DNA Purification (상피세포 시료 전처리용 마이크로바이오칩에 관한 연구)

  • Ha, Seung-Mo;Cho, Woong;Ahn, Yoo-Min;Hwang, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1785-1791
    • /
    • 2010
  • This paper describes a separable microfluidic device fabricated with PDMS (polydimethylsiloxane) and glass. The device is used for sample preparation involving cell lysis and the DNA purification process. The cell lysis was performed for 2 min at $80^{\circ}C$ in a serpentine-type microreactor ($20 {\mu}l$) using a Au microheater that was integrated with a thermal microsensor on a glass substrate. The DNA that was mixed with other residual products during the cell lysis process was then filtered through a new filtration system composed of microbeads (diameter: $50 {\mu}m$) and PDMS pillars. Since the entire process (sample loading, cell lysis reaction, DNA purification, and sample extraction) was performed within 5 min in a microchip, we could reduce the sample preparation time in comparison with that for the conventional methods used in biochemistry laboratories. Finally, we verified the performance of the sample preparation chip by conducting PCR (polymerase chain reaction) analysis of the chip product.

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF