• Title/Summary/Keyword: microgravity environment

Search Result 30, Processing Time 0.025 seconds

Future Opportunities for life Science Programs in Space

  • Hiroki Yokota;Sun, Hui-Bin;George M. Malacinski
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 2000
  • Most space-related life science programs are expensive and time-consuming, requiring international cooperation and resources with trans-disciplinary expertise. A comprehensive future program in "life sciences in space" needs, therefore, well-defined research goals and strategies as well as a sound ground-based program. The first half of this review will describe four key aspects such as the environment in space, previous accomplishments in space (primarily focusing on amphibian embryogenesis), available resources, and recent advances in bioinformatics and biotechnology, whose clear understanding is imperative for defining future directions. The second half of this review will focus on a broad range of interdisciplinary research opportunities currently supported by the National Aeronautics and Space Administration (NASA), National Institute of Health (NIH), and National Science Foundation (NSF). By listing numerous research topics such as alterations in a diffusion-limited metabolic process, bone loss and skeletal) muscle weakness of astronauts, behavioral and cognitive ability in space, life in extreme environment, etc., we will attempt to suggest future opportunities.

  • PDF

Ground-based model study for spaceflight experiments under microgravity environments on thermo-solutal convection during physical vapor transport of mercurous chloride

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.256-263
    • /
    • 2007
  • For $P_B=50Torr,\;P_T=5401Torr,\;T_S=450^{\circ}C,\;{\Delta}T=20K$, Ar=5, Pr=3.34, Le=0.01, Pe=4.16, Cv=1.05, adiabatic and linear thermal profiles at walls, the intensity of solutal convection (solutal Grashof number $Grs=7.86{\times}10^6$) is greater than that of thermal convection (thermal Grashof number $Grt=4.83{\times}10^5$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B (He). With increasing the partial pressure of component B from 20 up to 800 Torr, the rate is decreased exponentially. It is also interesting that as the partial pressure of component B is increased by a factor of 2, the rate is approximately reduced by a half. For systems under consideration, the rate increases linearly and directly with the dimensionless Peclet number which reflects the intensity of condensation and sublimation at the crystal and source region. The convective transport decreases with lower g level and is changed to the diffusive mode at $0.1g_0$. In other words, for regions in which the g level is $0.1g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than $0.1g_0$ can be adequate to ensure purely diffusive transport.

Radiation Biology in Space; DNA Damage and Biological Effects of Space Radiation

  • Ohnishi, Takeo;Takahashi, Akihisa;Ohnishi, Ken
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.37-40
    • /
    • 2002
  • Astronauts are constantly exposed to space radiation at a low-dose rate during long-tenn stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Space radiations contain various kinds of different energy particles, especially high linear energy transfer (LET) particles. Therefore, we have to study the relative biological effectiveness (RBE) of space radiation under microgravity environment which may change RBE from a stress for cells. Furthermore, the research about space radiation might give us useful information about birth and evolution of life on the earth. We also can realize the importance of preventing the ozone layer from depletion by use of exposure equipment to sunlight at International Space Station (ISS).

  • PDF

Admittance Control for Satellite Docking Ground Testing System (위성 도킹 지상시험장치의 어드미턴스 제어)

  • Heejin Woo;Youngjin Choi;Daehee Won
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • The paper presents a hardware-in-the-loop (HIL) system designed for satellite movement testing in the microgravity environment on the ground with two industrial robots. Especially, the paper deals with the contact between satellites during rendezvous and docking simulations of satellites using a robotic HILS system. For this purpose, the admittance control method plays a core role in preventing damage to the satellite or robot from contact force between satellites. The coordinate frames are transformed into the mass center of the satellite and the admittance control at the level of exponential coordinates is adopted to actively use the properties of Lie groups related to tracking errors. These methods effectively mitigate the risk of robot damage during inter-satellite contact and ensure efficient tracking performance of satellite movements.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Experimental research of Pressure-Volume-Temperature mass gauging method using instantaneous analysis under cryogenic homogeneous condition (순간 해석 기법을 이용한 PVT 잔량 측정법의 극저온 균일 온도 조건에서의 실험적 연구)

  • Seo, Man-Su;Jeong, Sang-Kwon;Jung, Young-Suk;Ku, Dong-Hun;Ji, Dong-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • In the extreme conditions of launch vehicle in a space, such as cryogenic temperature and low-gravity environment, the mass gauging of remaining propellants becomes a difficult problem. Pressure-volume-temperature (PVT) method is one of the attractive mass gauging methods under low-gravity due to its simplicity and reliability. PVT gauging experiment with various mass flow rates of helium injection is carried out with the experimental apparatus creating cryogenic homogeneous condition as the condition of low-gravity. Experimental results are analyzed by a novel PVT gauging analysis method which considers all instantaneous changes of pressure and temperature in the ullage volume with small time intervals. It is observed that the gauging error from the novel PVT gauging analysis is -0.11% with 2 slpm mass flow rate of helium injection.

Experimental Study on Flame Extinction in Buoyancy-minimized Counterflow Diffusion Flame (부력의 영향을 최소화한 조건에서 대향류 확산화염의 화염 소화에 관한 실험적 연구)

  • Chung, Yong Ho;Park, Jin Wook;Park, Jeong;Kwon, Oh Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Experiments were conducted to clarify role of the outermost edge flame on low-strain-rate flame extinction in buoyancy-suppressed non-premixed methane flames diluted with He and $N_2$. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in $N_2$- and He-diluted non-premixed counterflow flame experiments. The critical He and $N_2$ mole fractions at extinction with a global strain rate were examined at various burner diameters (10, 20, and 25 mm). The results showed that the extinction curves differed appreciably with burner diameter. Before the turning point along the extinction curve, low-strain-rate flames were extinguished via shrinkage of the outermost edge flame with and without self-excitation. High-strain-rate flames were extinguished via a flame hole while the outermost edge flame was stationary. These characteristics could be identified by the behavior of the outermost edge flame. The results also showed that the outermost edge flame was not influenced by radiative heat loss but by convective heat addition and conductive heat losses to the ambient He curtain flow. The numerical results were discussed in detail. The self-excitation before the extinction of a low-strain-rate flame was well described by a dependency of the Strouhal number on global strain rate and normalized nozzle exit velocity.

Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure

  • Iwahashi, Takeshi;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.

  • PDF

A Linkage Based Space Debris Capture Device Utilizing Kevlar Wires (Kevlar wire를 이용한 링크 구동형 우주잔해 포획장치)

  • Jung, Jinwon;Hwang, Bohyun;Kim, Heekyung;Lee, Gunhee;Seo, Minseok;Lee, Dongyun;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.36-41
    • /
    • 2017
  • As the space debris in the satellite orbit increases, the risk of collision between the currently operating satellites and the space debris is continuously increasing. Therefore, in this study, we designed one-degree-of-freedom capture device using simple deployment mechanism. The capture device consists of four link groups connected with net. To increase the reliability, each link group is connected to one driving part so that the total degree of freedom is 1. In addition, the links were stowed on each side of the satellites so that they would not affect the janitor satellite mission. Finally, to confirm the possibility of deployment in the space environment, we carried out deployment experiments in water similar to the microgravity environment, and confirmed the deployment of capture device and the possibility of capturing target satellite.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.