• 제목/요약/키워드: microgravity

검색결과 109건 처리시간 0.022초

Theory and technology of growing striation-free crystals

  • Scheel, Hans J.
    • 한국결정성장학회지
    • /
    • 제14권4호
    • /
    • pp.174-186
    • /
    • 2004
  • Striations are growth-induced inhomogeneities which hamper the applications of solid-solution crystals and of doped crystals in numerous technologies. Thus the optimized performance of solid solutions often can not be exploited. The inhomogeneity problem can be solved in specific cases by achieving a distribution coefficient one in growth from melts and from solutions. Macrostep-induced striations can be suppressed by controlling the growth mode, by achieving growth on facets thereby preventing step bunching. Thermal striations are commonly assumed to be caused by convective instabilities so that reduced convection by microgravity or by damping magnetic fields was and is widely attempted to reduce such inhomogeneities. Here it will be shown that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth system do not cause striations. The theoretically derived conditions were experimentally established and allowed the growth of striation-free crystals of $KTa_{1-x}Nb_xO_3$"KTN" solid solutions. Hydrodynamic variations from the accelerated crucible rotation technique ACRT did not cause striations as long as the temperature was controlled within $0.03^{\circ}$ at $1200^{\circ}C$ growth temperature. Alternative approaches to solve or reduce the segregation and striation problems in growth from melts and from solutions are discussed as well.

우주비행 훈련 기간에 채취한 예비우주인 모발의 형태적인 변화 - 증례 보고 - (Morphological Changes of Pre-Astronaut's Hair During Spaceflight Training - A Case Report -)

  • 이원근;장병수
    • Applied Microscopy
    • /
    • 제39권4호
    • /
    • pp.365-371
    • /
    • 2009
  • 본 연구는 우주비행 훈련 중인 남녀 예비우주인의 모발을 채취하여 모발의 형태적 변화를 전자현미경을 사용하여 관찰하였고 인장강도 특성을 인장강도기를 사용하여 분석하였다. 남성과 여성 두 예비우주인의 모발 표면은 매우 거칠고 불규칙한 모양을 하고 있었다. 예비우주인들의 모발표면에는 파괴된 큐티클세포의 잔유물이 지저분하게 붙어 있었고, 비늘이 분리되어 있었다. 그리고 큐티클층을 이루고 있는 큐티클세포의 세포질에는 많은 구멍을 형성하고 있었다. 모발 표면에서 큐티클세포의 부서짐은 이들 구멍들이 형성된 부위인 내큐티클이 파괴되면서 나타났다. 그리고 여성 예비우주인 모발의 인장강도는 14.60mm로서 건강모발과 비교하였을 때 약 10% 감소한 것으로 나타났다.

부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동 (Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames)

  • 박진욱;박정;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향 (Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame)

  • 박진욱;박정;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF

Effects of total pressure and gravity level on the physical vapor transport of $Hg_2Cl_2-Cl_2$ system

  • Choi, Jeong-Gi;Kwon, Moo-Hyun;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제19권3호
    • /
    • pp.116-124
    • /
    • 2009
  • Our computational studies for the physical vapor transport crystal growth of $Hg_2Cl_2-Cl_2$ system evidence suggests that the PVT growth process exhibits the diffusion-dominated behaviors for aspect ratios more than and equal to 10, which would provide purely diffusive transport conditions adequate to microgravity environments less than $10^{-3}g_0$. Also, the regimes of high temperature difference based on the fixed source temperature of $380^{\circ}C$, where ${\Delta}T$ is relatively large enough for the crystal growth of mercurous chloride, the transport rates do not keep increasing with ${\Delta}T$ but tend to some constant value of $2.12\;mole\;cm^{-2}s^{-1}$. For the aspect ratios of 5, 10, and 20, the transport rate is directly proportional to the total pressure of the system under consideration. For Ar = 5, the rate is increased by a factor of 2.3 with increasing the total pressure from 403 Torr to 935 Torr, i.e., by a factor of 2.3. For both Ar = 10 and 20, the rate is increased by a factor of 1.25 with increasing the total pressure from 403 Torr to 935 Torr.

Predictions of zinc selenide single crystal growth rate for the micro gravity experiments

  • Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제14권5호
    • /
    • pp.226-232
    • /
    • 2004
  • One predicts the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration based on one dimensional advection-diffusion and two-dimensional diffusion-convection model. The present results show that for the ratios of partial pressures, s = 0.2 and 2.9, the growth rate increases with the temperature differences between the source and crystal. As the ratio of partial pressure approaches the stoichiometric value, s = 2 from s = 1.5 (zinc-deficient case: s < 2) and 2.9 (zinc-rich case: s > 2), the rate increases sharply. For the ranges from 1.5 to 1.999 (zinc-deficient case: s < 2) and from s = 9 to 2.9 (zinc-rich case: s > 2), the rate are slightly varied. From the viewpoint of the order of magnitude, the one-dimensional model for low vapor pressure system falls within the 2D predictions, which indicates the flow fields would be advective-diffusive. For the effects of gravitational accelerations on the rate, the gravitational constants are varied from 1 g to $10^{-6}$ g for $\Delta$T = 50 K and s = 1.5, the rates remain nearly constant, i.e., 211 mg/hr, which indicates Stefan flow is dominant over convection.

정상 및 미소중력장에서 프로판 층류 제트 삼지 화염의 전파속도에 관한 실험적 연구 (Normal and Micro Gravity Experiments on Propagation Speed of Tribrachial Flame of Propane in Laminar Jets)

  • 이종수;원상희;진성호;;;정석호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.47-54
    • /
    • 2002
  • The propagation speed of tribrachial flame in laminar propane jets has been investigated experimentally under normal and micro gravity conditions. The displacement speed was found to vary nonlinearly with axial distance because flow velocity along stoichiometric contour was comparable to the propagation speed of tribrachial flame for the present experiment. Approximate solutions for velocity and concentration accounting density difference and virtual origins have been used in determining the propagation speeds of tribrachial flame. Under micro gravity condition, the results showed that propagation speed of tribrachial flame is largely affected by the mixture fraction gradients, in agreement with previous studies. The limiting maximum value. of propagation speeds under micro gravity conditions are in good agreement with the theoretical prediction, that is, the ratio of maximum propagation speed to the stoichiometric laminar burning velocity is proportional to the square root of the density ratio of unburned to burnt mixture.

  • PDF

저 신장율 대향류 확산화염에서 화염 특성에 관한 버너 간격 효과 (Effects of Burner Distance on Flame Characteristics at Low Strain Rate Counterflow Edge Flames)

  • 윤진한;길상인;황동진;최윤진;류정인;박정
    • 한국연소학회지
    • /
    • 제13권4호
    • /
    • pp.26-36
    • /
    • 2008
  • Experimental study is conducted to identify the existence of a shrinking flame disk and to clarify its flame characteristics through the inspection of critical mole fraction at flame extinction and edge flame oscillation at low strain rate flames. Experiments are made as varying global strain rate, velocity ratio, and burner distance. The transition from a shrinking flame disk to a flame hole is verified through gradient measurements of maximum flame temperature. The evidence of edge flame oscillation in flame disk is also provided through numerical simulation in microgravity. It is found at low strain rate flame disks in normal gravity that buoyancy effects are importantly contributing to lateral heat loss to burner rim, and is proven through critical mole fraction at flame extinction, edge flame oscillation, and measurements of flame temperature gradient along flame disk surface.

  • PDF

자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할 (The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio)

  • 이원남;배승만
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.

Effect of accelerational perturbations on physical vapor transport crystal growth under microgravity environments

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kwon, Moo-Hyun;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.203-209
    • /
    • 2006
  • For $P_B=50,\;{\Delta}T=10K$, Ar=5, Pr=2.36, Le=0.015, Pe=1.26, Cv=1.11, the intensity of solutal convection (solutal Grashof number $Grs=3.44x10^4$) is greater than that of thermal convection (thermal Grashof number $Grt=1.81x10^3$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A($Hg_2Cl_2$) and B(He). With increasing the partial pressure of component B from 10 up to 200 Torr, the rate is decreased exponentially. The convective transport decreases with lower g level and is changed to the diffusive mode at 0.1 $g_0$. In other words, for regions in which the g level is 0.1 $g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than 0.1 $g_0$ can be adequate to ensure purely diffusive transport.