• Title/Summary/Keyword: microgap

Search Result 13, Processing Time 0.026 seconds

A Basic Study on the Discharge of a Rod-to-Rod Microgap in the Pure Water (수중(水中) 미소(微少) 봉대봉(棒對棒) 전극간(電極間)의 방전현상(放電現象) 기초연구(基礎硏究))

  • Moon, Jae-Duk;Lee, Dae-Hee;Kim, Jin-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.918-921
    • /
    • 1992
  • A basic study on the discharge phenomenum of rod-to-rod microgap in the deionized water has been investigated with emphasis on the microgap spacing. The I-V charateristics for the case of ac and dc applied voltages had 3 different regions, a low conduction ohmic region, a medium conduction corona discharge region, and a high conduction arc discharge region. The corona discharge in the deionized water for the case of ac and de applied voltages had no different from the those in the air. But the arc discharge in the water occurred pulsative with sound which, however it is not clear, would be encounted due to the influences from the low temperature of the ambient water, vast of electrolytic generated electronegative gases(e.g. $O_2$, OH, O) and water molecules($H_2O$), and the space charge effects near the rod in the microgap from the ions of $H^+$, $OH^-$, $O_2^-$, etc, whose mobilities in the water are originally very low.

  • PDF

Biomechanical stress and microgap analysis of bone-level and tissue-level implant abutment structure according to the five different directions of occlusal loads

  • Kim, Jae-Hoon;Noh, Gunwoo;Hong, Seoung-Jin;Lee, Hyeonjong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.316-321
    • /
    • 2020
  • PURPOSE. The stress distribution and microgap formation on an implant abutment structure was evaluated to determine the relationship between the direction of the load and the stress value. MATERIALS AND METHODS. Two types of three-dimensional models for the mandibular first molar were designed: bone-level implant and tissue-level implant. Each group consisted of an implant, surrounding bone, abutment, screw, and crown. Static finite element analysis was simulated through 200 N of occlusal load and preload at five different load directions: 0, 15, 30, 45, and 60°. The von Mises stress of the abutment and implant was evaluated. Microgap formation on the implant-abutment interface was also analyzed. RESULTS. The stress values in the implant were as follows: 525, 322, 561, 778, and 1150 MPa in a bone level implant, and 254, 182, 259, 364, and 436 MPa in a tissue level implant at a load direction of 0, 15, 30, 45, and 60°, respectively. For microgap formation between the implant and abutment interface, three to seven-micron gaps were observed in the bone level implant under a load at 45 and 60°. In contrast, a three-micron gap was observed in the tissue level implant under a load at only 60°. CONCLUSION. The mean stress of bone-level implant showed 2.2 times higher than that of tissue-level implant. When considering the loading point of occlusal surface and the direction of load, higher stress was noted when the vector was from the center of rotation in the implant prostheses.

Compressibility Effect in the Axisymmetric Internal Flow Past a Microgap (미세 간극을 지나는 축대칭 내부 유동의 압축성 효과 분석)

  • Kim, Seong-Soo;Chang, Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1061-1069
    • /
    • 2010
  • In this study, a simplified axisymmetric model is proposed for the problem of compressible internal flow past a microgap. Using numerical and experimental methods, the phenomena of choked flows are observed; these flows are induced by the acceleration of subsonic flows past the narrow cross-section of an annular shape made by a microgap. The relation between mass flow rate and differential pressure is obtained, and by comparing the result with experimental results, the reliability of the numerical results is discussed. The generation of a supersonic jet flow and its diffraction are visualized by performing the numerical analysis of axisymmetric compressible Navier-Stokes equations. This investigation greatly extends the physical understanding of the axisymmetric compressible flow, which has a wide range of engineering applications, e.g., in the case of valves in automotive power systems.

Marginal bony changes in relation to different vertical positions of dental implants

  • Yi, Jung-Myung;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.244-248
    • /
    • 2010
  • Purpose: The purpose of this study was to radiographically evaluate marginal bony changes in relation to different vertical positions of dental implants. Methods: Two hundred implants placed in 107 patients were examined. The implants were classified by the vertical positions of the fixture-abutment connection (microgap): 'bone level,' 'above bone level,' or 'below bone level.' Marginal bone levels were examined in the radiographs taken immediately after fixture insertion, immediately after second-stage surgery, 6 months after prosthesis insertion, and 1 year after prosthesis insertion. Radiographic evaluation was carried out by measuring the distance between the microgap and the most coronal bone-to-implant contact (BIC). Results: Immediately after fixture insertion, the distance between the microgap and most coronal BIC was $0.06{\pm}0.68\;mm$; at second surgery, $0.43{\pm}0.83\;mm$; 6 months after loading, $1.36{\pm}0.56\;mm$; and 1 year after loading, $1.53{\pm}0.51\;mm$ ($mean{\pm}SD$). All bony changes were statistically significant but the difference between the second surgery and the 6-month loading was greater than between other periods. In the 'below bone level' group, the marginal bony change between fixture insertion and 1 year after loading was about 2.25 mm, and in the 'bone level' group, 1.47 mm, and in 'above bone level' group, 0.89 mm. Therefore, the marginal bony change was smaller than other groups in the 'above bone level' group and larger than other groups in the 'below bone level' group. Conclusions: Our results demonstrated that marginal bony changes occur during the early phase of healing after implant placement. These changes are dependent on the vertical positions of implants.

Evaluation of platform switching and its clinical application (Platform switching(또는 Platform shifting) 개념 및 임상적용에 관한 고찰)

  • Yang, Byoung-Eun;Song, Sang-Hun;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.45 no.9 s.460
    • /
    • pp.562-570
    • /
    • 2007
  • Many dentists and patients expect that implant function and esthetics will not change over time. However, even the most successful implant restorations with ideal position, vertical height, and occlusion can be aesthetically pleasing, but may hide a common problem. Many dentists noticed that there can be some circumferential bone loss around the neck of the implants. To circumvent this bone loss, a "platform switching" concept was introduced recently. The basic concept of platform switching is by moving the fixture-abutment interface further away from the crestal bone to minimize crestal bone loss. Since crestal bone loss is a multifactor problem, it is important to consider microgap formation and micromotion between the implant and abutment because platform switching does not solve the problem on its own. In this article, we reviewed studies concerning platform switching and discussed the clinical application and the problems that may occur with its use.

  • PDF

The Effect of Types of Abutment and Dynamic Loading on Microgap between Implant Fixture and Abutment (임플란트 지대주 종류와 동적하중이 고정체와 지대주의 미세간극에 미치는 영향)

  • Oh, Byung-Doo;Choi, Yu-Sung;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Titanium and gold-alloy abutments have been used for a long-time in the clinical situations, but the use of zirconia abutments also increased. This study was designed to compare and evaluate the microgap differences according to types of abutment and dynamic loading. Titanium abutment, zirconia abutment and gold-alloy abutment (UCLA plastic) were connected into titanium implants of external hexagonal structure US II ${\phi}$ $3.75{\times}11.5$ mm (Osstem Co., Seoul, Korea) with the tightening torque of 30 Ncm. A sine type dynamic loading of 25-250 N and $30^{\circ}$ inclination from long axis was applied for $10^5$ times. Using the SEM both before and after the loadings, implant-abutment interfaces were analyzed on the labial, palatal, mesial and distal surface. The microgaps before and after the loading were compared, no statistically significant difference was observed caused by the dynamic loading on the labial, palatal, mesial or distal surface. Statistically significant difference was observed between UCLA and titanium group and between UCLA and zirconia group on both before and after the loading(p<0.05). No statistically significant difference was found between titanium and zirconia group. Loadings for $10^5$ times did not show significant effect to the microgaps between implants and abutments.

Treatment of Red Tide in Ocean Using Hydroxyl Radical

  • Zhitao Zhang;Mindong Bai;Xiyao Bai;Xue, Xiao-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.38-42
    • /
    • 2004
  • A pilot-scale experiment for the treatment of red tide in the enclosure was done in sea area of Shandong Province, P. R. China on Aug. 25, 2002. With the method of strong dielectric barrier discharge in microgap, $O_2$in air and $H_2O$ in seawater are ionized and dissociated into large numbers of OHㆍradicals, and then dissolved into a part of seawater to form OHㆍsolution of high concentration. With OH' concentration of 0.68mg/L, the kill efficiencies of 29 kinds of red tide organisms such as Chaetoceros lorenzianus and so on reached 99.89%, in which the kill efficiencies of bacterium and vibrio were 100%, and that of Gonyaulax cysts and Prei. Cysts were up to 100%. At the same time, the content of chlorophyll-a was decreased into the lowest limit of test. DO saturation of seawater was greatly increased to 100% because the residual OHㆍradical was decomposed into $H_2O$ and $O_2$after 20 minutes, Therefore the treatment of red tide using OHㆍradicals is a kind of advanced oxidation technology, which realizes zero pollution, zero emission and zero residual in the process of the production of OHㆍradicals and the treatment of red tide.

  • PDF

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE PLATFORM SWITCHING

  • Kim Yang-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.727-735
    • /
    • 2005
  • Statement of problem. Platform switching in implant prosthesis has been used for esthetic and biological purpose. But there are few reports for this concept. Purpose. The purpose of this study is evaluation of platform switching in wide implant by three dimensional finite element analysis. Materials and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for Osstem implant system. Three-dimensional finite element models were developed for (1) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with wide cemented abutment, titanium alloy abutment screw, and prosthesis (2) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with regular cemented abutment, titanium alloy abutment screw and prosthesis(platform switching) was made for finite element analysis. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized to 650N, and round and flat type prostheses were loaded to 200 N. Four loading offset point (0, 2, 4, 6 mm from the center of the implants) were evaluated. Models were processed by the software programs HyperMesh and ANSA. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView were used for post processing. Results. The results from experiment were as follows; 1. von Mises stress value is increased in order of bone, abutment, implant and abutment screw. 2. von Mises stress of abutment screw is lower when platform switching. 3. von Mises stress of implant is lower when platform switching until loading offset 4 mm. 4. von Mises stress of abutment is similar between each other. 5. von Mises stress of bone is slightly higher when platform switching. Conclusion. The von Mises stress pattern of implant components is favor when platform switch ing but slightly higher in bone stress distribution than use of wide abutment. The research about stress distribution is essential for investigation of the cortical bone loss.

Retrospective study of conical connection dental implant (Ankylos dental Implant). (Conical connection 임프란트(Ankylos dental implant)에 대한 후향적 임상연구)

  • Yang, Byoung-Eun;Song, Sang-Hun;Shim, Hye-Won;Lee, Sang-Min;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.44 no.11 s.450
    • /
    • pp.739-747
    • /
    • 2006
  • Objectives. The standardization of connection between fixture and abutment has not been defined. The success of dental implants was not always depends on connection. However, the connection mechanism is one of the most important things for dental implant treatment success. Most implant systems are very comparable in their design and engineering. They share many common characteristics and have similar strengths and weaknesses. Their significant weaknesses are connection, microgap and the resulting micromovement allowing bacterial contamination and bone loss. In the present study, we investigated the clinical performance of Ankylos implant (conical connection implant) Patients and Methods. The clinical performance of conical connection implant was studied under well-controlled clinical conditions. A total of 133 conical connection implants were placed in 50 patients from April 2005 to March 2006. The mean follow-up loading period of implants which was considered successful was 220$\pm$29 days. We recorded the age, sex, installation site, reason of edentulous region, bone density of installation site, diameter and length of dental implants and periods from installation to uncovering surgery using patients medical chart. Results Four Ankylos implants were lost during pre-loading period. 129 implants provided excellent clinical performance during 220$\pm$29 days on an average. The short-term success rate of this conical connection implant system was 96.99%.

  • PDF

A STUDY ON THE FIT OF THE IMPLANT-ABUTMENT-SCREW INTERFACE (임플란트-지대주-나사의 적합에 관한 연구)

  • Kim Nak-Hyung;Chung Chae-Heon;Son Mee-Kyoung;Back Dae-Hwa
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.503-518
    • /
    • 2003
  • Statement of problem : There have been previous studies about considerable variations in machining accuracy and consistency in the implant-abutment-screw interfaces. Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combinations on two randomly selected implants from each of four manufactures. Material and methods : In this study, screws were respectively used to secure a cemented abutment, to a hexlock implant fixture ; teflon coated titanium alloy screw(Torq-Tite) and titanium alloy screw in Steri--Oss system, gold-plated gold-palladium alloy screw(Gold-Tite) and titanium alloy screw in 3i system gild screw ana titanium screw in AVANA Dental Implant system, and titanium screws in Paragon System. The implants were perpendicularly mounted in polymethyl methacrylate autopolymerizing acrylic resin block(Orthodontic resin, Densply International Inc. USA) by use of dental surveyer. Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10 minutes. All samples were cross sectioned with grinder-polisher unit(Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc) Results : There were the largest gaps in the neck areas of screws in hexagonal extension implants which were examined in this study. The leading edge of the abutment screw thread (superior surface) was in contact with the implant body thread, and the majority of the contacting surfaces were localized to the middle portion of the mating threads. Considerable variation in the contacting surfaces was noted in the samples evaluated. Amounts of contact in the abutment screw thread were larger for assemblies with Gold-Tite screw, gold alloy screw. Torq-Tite screw than those with titanium screws. The findings of intimate contact between the screw and screw seat were seen in all samples, regardless of manufacturers. However, microgap between the head and lateral neck surface of the screw and the abutment could be dectected in all samples. The findings of intimate contact between the platform of the implant and the bottom of the abutment were consistent in all samples, regardless of manufacturers. However, microgaps between the lateral surface of external hex of the fixture and the abutment could be dectected in all samples. Conclusion : Considerable variations in machining accuracy and consistency were noted in the samples and the implant-abutment-screw interfaces were incomplete. From the results of this study, further development of the system will be required, including improvements in pattern design.