• Title/Summary/Keyword: microfines

Search Result 4, Processing Time 0.017 seconds

The Physical Properties of Granite Microfines and the Workability of Mortar with Granite Microfines

  • Koehler, Eric;Hahn, Michael De Moya;Trachet, Alison;Rached, Marc;Choi, Jae Jin;Fowler, David
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.69-74
    • /
    • 2009
  • This paper summarizes the analysis of granite microfines from California for use in portland cement concrete. For reference, the granite microfines were compared to microfines used in previous International Center for Aggregates Research(ICAR) projects. The particle shape characteristics, based on the packing density results, were assessed and apparent clay content, based on the methylene blue value test, was evaluated. Also, the physical properties of the microfines were confirmed in self-consolidating mortar mixtures.

  • PDF

Properties of Haeju Sea Sand in North Korea (북한 해주산 세척사 특성)

  • Kim, Jung-Bin;Hong, Ji-Hoon;Park, Se-Jong;Lee, Seong-Youn;Cho, Jae-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • This paper is examined the properties of Haeju sea sand for concrete. As result, the water absorbtion ratio and the contents of shell and microfines of Haeju sea sand was high. We would expected to utilize the results of this study as a basic data for quality control of Ready Mixed Concrete.

  • PDF

Analyzing the Engineering Properties of Cement Mortar using Raw Coal Ash as a Microfines for the Mixed Aggregate (미정제 석탄회를 혼합골재의 미립분 보충재로 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • The aim of the research is improving the quality of concrete by using the alternative aggregate resources and recycling wastes. To make a combined aggregate fitted in standard particle size distribution curve, crushed sand from blasted rock debris was used as a base aggregate. Additionally, to increase the portion of fine particles, sea sand was mixed. Although these aggregate combination fit the standard particle size distribution curve, in this research, raw coal ash was replaced as a microfine. According to the experiment, by replacing 5% raw coal ash, the most favorable results were achieved in aggregate gradation and cement mortar quality.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.