• Title/Summary/Keyword: microfailure mode

Search Result 5, Processing Time 0.016 seconds

Interfacial Properties and Microfailure Mechanisms of Electrodeposited Carbon Fiber/epoxy-PEI Composites by Microdroplet and Surface Wettability Tests (Microdroplet 시험법과 Surface Wettability 측정을 이용한 전기증착된 탄소섬유 강화 Epoxy-PEI 복합재료의 계면물성과 미세파괴 메카니즘)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.153-157
    • /
    • 2001
  • Interfacial properties and microfailure modes of electrodeposition (ED) treated carbon fiber reinforced polyetherimide (PEI) toughened epoxy composite were investigated using microdroplet test and the measurement of surface wettability. As PEI content increased, Interfacial shear strength (IFSS) increased due to enhanced toughness and plastic deformation of PEI. In the untreated case, IFSS increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, for ED-treated case IFSS increased with PEI content with rather low improvement rate. The work of adhesion between fiber and matrix was not directly proportional to IFSS for both the untreated and ED-treated cases. The matrix toughness might contribute to IFSS more likely than the surface wettability. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

  • PDF

Evaluation of Interfacial Properties on the Electrodeposited Carbon Fiber Reinforced Polyetherimide Toughened Epoxy Composites using Micromechanical Test (Micromechanical 시험법을 이용한 전기증착된 탄소섬유 강화 Polyetherimide로 강인화된 에폭시 복합재료의 계면물성 평가)

  • 박종만;김대식;공진우;김민영;김원호
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2002
  • Interfacial properties and microfailure modes or electrodeposition(ED) treated carbon fiber reinforced polyetherimide(PEI) toughened epoxy composites were investigated using microdroplet test. ED was performed to improve the interfacial shear strength(IFSS). As PEI content increased, IFSS increased due to enhanced toughness and plastic deformation of PEI. In the untreated cafe, IFSS Increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, thor ED-treated case IFSS increased with PEI content with rather low improvement rate. In the untreated case, neat epoxy resin appeared brittle microfailure mode, whereas pure PEI matrix exhibited more likely ductile microfailure mode. In the ED-treated case, neat epoxy exhibited more ductile fracture compared to the untreated case. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

Interfacial Properties and Residual Stress of Carbon Fiber/Epoxy-AT PEI Composite with Matrix Fracture Toughness using Microdroplet Test and Electrical Resistance Measurements (Microdroplet 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 수지파괴인성에 따른 잔류응력 및 계면물성)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • Interfacial and electrical properties for the carbon fiber reinforced epoxy-amine terminated (AT) PEI composites were performed using microdroplet test and electrical resistance measurements. As AT PEI content increased, the fracture toughness of epoxy-AT PEI matrix increased, and IFSS was improved due to the improved toughness and energy absorption mechanisms of AT PEI. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 wt% AT PEI content, ductile microfailure mode appeared because of improved fracture toughness. After curing, the changes of electrical resistance (ΔR) with increasing AT PEI content increased gradually because of thermal shrinkage. The matrix fracture toughness was correlated to IFSS, TEC and electrical resistance. In cyclic strain test, the maximum stress and their slope of the neat epoxy case were higher than those of 15 wt% AT PEI. The results obtained from electrical resistance measurements under curing process and reversible stress and strain were consistent well with matrix toughness properties.

  • PDF

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

Curing Behavior and Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites by Electrical Resistivity Measurement under Tensile/Compressive Tests (전기증착된 탄소섬유/에폭시 복합재료의 인장/압축 하중하에서의 전기저항 측정법을 이용한 경화 및 계면특성)

  • Park, Joung-Man;Lee, Sang-Il;Kim, Jin-Won
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • Curing behavior and interfacial properties were evaluated using electrical resistance measurement and tensile/compressive fragmentation test. Electrical resistivity difference (${\Delta}R$) during curing process was not observed in a bare carbon fiber. On the other hand, ${\Delta}R$ appeared due to the matrix contraction in single-carbon fiber/epoxy composite. Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred under tensile loading, whereas that of the ED composite reached relatively broadly up to the infinity. Comparing to the untreated case, interfacial shear strength (IFSS) of the ED treated composite increased significantly in both tensile fragmentation and compressive Broutman test. Microfailure modes of the untreated and the ED treated fiber composite showed the debonding and the cone shapes in tensile test, respectively. For compressive test, fractures of diagonal slippage were observed in both untreated and the ED treated composite. Sharp-end shape fractures exhibited in the untreated composite, whereas relatively dull fractures showed in the ED Heated composite. It is proved that ED treatments affected differently on the interfacial adhesion and microfailure mechanism under tensile/compressive tests.

  • PDF